Spaces:
Sleeping
Sleeping
commit
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 💡
|
4 |
colorFrom: yellow
|
5 |
colorTo: gray
|
|
|
1 |
---
|
2 |
+
title: Song Cover Image Generator
|
3 |
emoji: 💡
|
4 |
colorFrom: yellow
|
5 |
colorTo: gray
|
app.py
CHANGED
@@ -50,18 +50,15 @@ base = "black-forest-labs/FLUX.1-schnell"
|
|
50 |
|
51 |
# variable data
|
52 |
|
53 |
-
|
54 |
|
55 |
# precision data
|
56 |
|
57 |
seq=512
|
58 |
-
|
59 |
-
|
60 |
-
height=512
|
61 |
image_steps=8
|
62 |
-
|
63 |
-
img_accu=9
|
64 |
-
vid_accu=7
|
65 |
|
66 |
# ui data
|
67 |
|
@@ -124,24 +121,8 @@ function custom(){
|
|
124 |
|
125 |
# torch pipes
|
126 |
|
127 |
-
def disabled_safety_checker(images, clip_input):
|
128 |
-
if len(images.shape)==4:
|
129 |
-
num_images = images.shape[0]
|
130 |
-
return images, [False]*num_images
|
131 |
-
else:
|
132 |
-
return images, False
|
133 |
-
|
134 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
135 |
image_pipe.enable_model_cpu_offload()
|
136 |
-
image_pipe.safety_checker = None
|
137 |
-
|
138 |
-
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
139 |
-
"THUDM/CogVideoX-5b-I2V",
|
140 |
-
torch_dtype=torch.bfloat16
|
141 |
-
).to(device)
|
142 |
-
video_pipe.vae.enable_tiling()
|
143 |
-
video_pipe.vae.enable_slicing()
|
144 |
-
video_pipe.safety_checker = None
|
145 |
|
146 |
# functionality
|
147 |
|
@@ -149,12 +130,9 @@ def generate_random_string(length):
|
|
149 |
characters = str(ascii_letters + digits)
|
150 |
return ''.join(random.choice(characters) for _ in range(length))
|
151 |
|
152 |
-
@spaces.GPU(
|
153 |
-
def pipe_generate(
|
154 |
-
|
155 |
-
|
156 |
-
if img is None:
|
157 |
-
img = image_pipe(
|
158 |
prompt=p1,
|
159 |
negative_prompt=p2,
|
160 |
height=height,
|
@@ -164,133 +142,99 @@ def pipe_generate(img,p1,p2,time,title):
|
|
164 |
num_inference_steps=image_steps,
|
165 |
max_sequence_length=seq,
|
166 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
167 |
-
|
168 |
-
additional_image = True
|
169 |
-
|
170 |
-
if title != "":
|
171 |
-
draw = ImageDraw.Draw(img)
|
172 |
-
textheight=min(( width // 10 ), ( height // 5 ))
|
173 |
-
rows = 1
|
174 |
-
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
175 |
-
textwidth = draw.textlength(title,font)
|
176 |
-
x = (width - textwidth) // 2
|
177 |
-
y = (height - (textheight * rows // 2)) // 2
|
178 |
-
draw.text((x, y), title, (255,255,255), font=font)
|
179 |
-
|
180 |
-
additional_image = img if additional_image else None
|
181 |
-
|
182 |
-
if time == 0.0:
|
183 |
-
return img
|
184 |
-
|
185 |
-
return video_pipe(
|
186 |
-
prompt=p1,
|
187 |
-
negative_prompt=p2.replace("textual content, ",""),
|
188 |
-
image=img,
|
189 |
-
num_inference_steps=video_steps,
|
190 |
-
guidance_scale=vid_accu,
|
191 |
-
num_videos_per_prompt=1,
|
192 |
-
num_frames=(fps*time),
|
193 |
-
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
194 |
-
).frames[0]
|
195 |
-
|
196 |
-
def handle_generate(*_inp):
|
197 |
|
198 |
-
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
inp[2] = f"textual,labeled,divined,distorted,discontinuous,ugly,blurry,low resolution,motionless,static,wrong body anatomy{inp[2]}"
|
209 |
-
|
210 |
-
if len(inp[1]) >= 2:
|
211 |
-
inp[1] = "," + inp[1].strip(",").strip(" ")
|
212 |
-
|
213 |
-
inp[1] = f'realistic,natural,genuine,reasonable,highly detailed{inp[1]}'
|
214 |
|
215 |
print(f"""
|
216 |
-
|
217 |
Positive: {inp[1]}
|
218 |
|
219 |
Negative: {inp[2]}
|
220 |
-
|
221 |
""")
|
222 |
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
name = generate_random_string(12) +
|
226 |
-
|
227 |
-
|
228 |
-
else:
|
229 |
-
export_to_video(pipe_out,name,fps=fps)
|
230 |
-
if inp[3] == 0.0:
|
231 |
-
return name, None
|
232 |
-
else:
|
233 |
-
return additional_image, name
|
234 |
|
235 |
def ui():
|
236 |
-
global result
|
237 |
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
|
238 |
gr.Markdown(f"""
|
239 |
-
#
|
240 |
""")
|
241 |
with gr.Row():
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
with gr.Row():
|
254 |
-
|
255 |
-
|
256 |
-
placeholder="Excluded keywords",
|
257 |
container=False,
|
258 |
max_lines=1
|
259 |
)
|
260 |
with gr.Row():
|
261 |
-
|
262 |
-
minimum=0.0,
|
263 |
-
maximum=3.0,
|
264 |
-
value=0.0,
|
265 |
-
step=1.0,
|
266 |
-
label="Duration (0s = PNG)"
|
267 |
-
)
|
268 |
-
with gr.Row(elem_id="col-container"):
|
269 |
-
with gr.Column():
|
270 |
-
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
|
271 |
-
with gr.Column():
|
272 |
-
res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
273 |
-
with gr.Column():
|
274 |
-
res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False)
|
275 |
with gr.Row():
|
276 |
-
|
277 |
|
278 |
gr.on(
|
279 |
triggers=[
|
280 |
-
|
281 |
-
prompt.submit,
|
282 |
-
prompt2.submit
|
283 |
],
|
284 |
fn=handle_generate,
|
285 |
-
inputs=[
|
286 |
-
outputs=[
|
287 |
)
|
288 |
demo.queue().launch()
|
289 |
|
290 |
# entry
|
291 |
|
292 |
if __name__ == "__main__":
|
293 |
-
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
294 |
ui()
|
295 |
|
296 |
-
# end
|
|
|
50 |
|
51 |
# variable data
|
52 |
|
53 |
+
|
54 |
|
55 |
# precision data
|
56 |
|
57 |
seq=512
|
58 |
+
width=4320
|
59 |
+
height=4320
|
|
|
60 |
image_steps=8
|
61 |
+
img_accu=0
|
|
|
|
|
62 |
|
63 |
# ui data
|
64 |
|
|
|
121 |
|
122 |
# torch pipes
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
125 |
image_pipe.enable_model_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# functionality
|
128 |
|
|
|
130 |
characters = str(ascii_letters + digits)
|
131 |
return ''.join(random.choice(characters) for _ in range(length))
|
132 |
|
133 |
+
@spaces.GPU()
|
134 |
+
def pipe_generate(p1,p2):
|
135 |
+
return image_pipe(
|
|
|
|
|
|
|
136 |
prompt=p1,
|
137 |
negative_prompt=p2,
|
138 |
height=height,
|
|
|
142 |
num_inference_steps=image_steps,
|
143 |
max_sequence_length=seq,
|
144 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
145 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
def handle_generate(artist,song,genre,lyrics):
|
148 |
|
149 |
+
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
|
150 |
+
pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
|
151 |
+
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|
152 |
+
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
|
153 |
+
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip()
|
154 |
+
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
|
155 |
+
pos = f'Realistic Natural Genuine Reasonable Detailed { pos_genre } GENRE SONG COVER FOR { pos_song }: "{ pos_lyrics }"'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
print(f"""
|
|
|
158 |
Positive: {inp[1]}
|
159 |
|
160 |
Negative: {inp[2]}
|
|
|
161 |
""")
|
162 |
|
163 |
+
img = pipe_generate(pos,neg)
|
164 |
+
|
165 |
+
draw = ImageDraw.Draw(img)
|
166 |
+
|
167 |
+
rows = 1
|
168 |
+
labes_distance = 1 // 3
|
169 |
+
|
170 |
+
textheight=min(( width // 10 ), ( height // 5 ))
|
171 |
+
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
172 |
+
textwidth = draw.textlength(pos_song,font)
|
173 |
+
x = (width - textwidth) // 2
|
174 |
+
y = (height - (textheight * rows // 2)) // 2
|
175 |
+
y = y - (y // labes_distance)
|
176 |
+
draw.text((x, y), pos_song, (255,255,255), font=font)
|
177 |
+
|
178 |
+
textheight=min(( width // 12 ), ( height // 6 ))
|
179 |
+
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
|
180 |
+
textwidth = draw.textlength(pos_artist,font)
|
181 |
+
x = (width - textwidth) // 2
|
182 |
+
y = (height - (textheight * rows // 2)) // 2
|
183 |
+
y = y + (y // labes_distance)
|
184 |
+
draw.text((x, y), pos_artist, (255,255,255), font=font)
|
185 |
|
186 |
+
name = generate_random_string(12) + ".png"
|
187 |
+
img.save(name)
|
188 |
+
return name
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
def ui():
|
|
|
191 |
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
|
192 |
gr.Markdown(f"""
|
193 |
+
# Song Cover Image Generator
|
194 |
""")
|
195 |
with gr.Row():
|
196 |
+
with gr.Column():
|
197 |
+
artist = gr.Textbox(
|
198 |
+
placeholder="Artist name",
|
199 |
+
container=False,
|
200 |
+
max_lines=1
|
201 |
+
)
|
202 |
+
with gr.Column():
|
203 |
+
song = gr.Textbox(
|
204 |
+
placeholder="Song name",
|
205 |
+
container=False,
|
206 |
+
max_lines=1
|
207 |
+
)
|
208 |
+
with gr.Column():
|
209 |
+
genre = gr.Textbox(
|
210 |
+
placeholder="Genre",
|
211 |
+
container=False,
|
212 |
+
max_lines=1
|
213 |
+
)
|
214 |
with gr.Row():
|
215 |
+
lyrics = gr.Textbox(
|
216 |
+
placeholder="Lyrics (English)",
|
|
|
217 |
container=False,
|
218 |
max_lines=1
|
219 |
)
|
220 |
with gr.Row():
|
221 |
+
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
with gr.Row():
|
223 |
+
run = gr.Button("Generate",elem_classes="btn")
|
224 |
|
225 |
gr.on(
|
226 |
triggers=[
|
227 |
+
run.click
|
|
|
|
|
228 |
],
|
229 |
fn=handle_generate,
|
230 |
+
inputs=[artist,song,genre,lyrics],
|
231 |
+
outputs=[cover]
|
232 |
)
|
233 |
demo.queue().launch()
|
234 |
|
235 |
# entry
|
236 |
|
237 |
if __name__ == "__main__":
|
|
|
238 |
ui()
|
239 |
|
240 |
+
# end
|