Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -27,16 +27,13 @@ from safetensors.torch import load_file, save_file
|
|
27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
28 |
#import jax
|
29 |
#import jax.numpy as jnp
|
30 |
-
from numba import
|
31 |
from numba.cuda import jit as gpu
|
32 |
|
33 |
# optimization:
|
34 |
|
35 |
# @gpu(cache=True)
|
36 |
-
# @
|
37 |
-
# @cpu2(cache=True,nopython=True,parallel=True)
|
38 |
-
# @cpu1(cache=True)
|
39 |
-
# @cpu2(cache=True)
|
40 |
|
41 |
# logging
|
42 |
|
@@ -118,18 +115,19 @@ function custom(){
|
|
118 |
|
119 |
# functionality
|
120 |
|
121 |
-
@gpu(cache=True)
|
122 |
-
|
123 |
-
# @
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
135 |
if result.returncode != 0:
|
@@ -139,18 +137,20 @@ def run(*args):
|
|
139 |
sys.exit()
|
140 |
return result
|
141 |
|
142 |
-
@gpu(cache=True)
|
143 |
-
|
144 |
-
# @
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
154 |
|
155 |
if text == None or lang == None:
|
156 |
return ""
|
@@ -181,7 +181,7 @@ def translate(*args):
|
|
181 |
translated = text
|
182 |
try:
|
183 |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
|
184 |
-
trgt_lang = html.xpath
|
185 |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
|
186 |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
|
187 |
if trgt_lang == lang:
|
@@ -192,34 +192,39 @@ def translate(*args):
|
|
192 |
print(ret)
|
193 |
return ret
|
194 |
|
195 |
-
@gpu(cache=True)
|
196 |
-
|
197 |
-
# @
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
|
208 |
characters = string.ascii_letters + string.digits
|
209 |
return ''.join(random.choice(characters) for _ in range(length))
|
210 |
|
211 |
@gpu(cache=True)
|
212 |
-
# @
|
213 |
-
# @
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
223 |
|
224 |
global last_motion
|
225 |
global ip_loaded
|
@@ -257,22 +262,23 @@ def Piper(*args):
|
|
257 |
)
|
258 |
|
259 |
@gpu(cache=True)
|
260 |
-
# @
|
261 |
-
# @
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
271 |
|
272 |
print("infer: started")
|
273 |
|
274 |
p1 = pm["p"]
|
275 |
-
name = generate_random_string[
|
276 |
|
277 |
neg = pm["n"]
|
278 |
if neg != "":
|
@@ -285,44 +291,50 @@ def infer(args):
|
|
285 |
|
286 |
if pm["i"] == None:
|
287 |
return None
|
288 |
-
out = Piper[32,32](pm["i"],posi,neg,pm["m"])
|
289 |
export_to_gif(out.frames[0],name,fps=fps)
|
290 |
return name
|
291 |
|
292 |
-
@gpu(cache=True)
|
293 |
-
|
294 |
-
# @
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
307 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
308 |
ln = len(result)
|
309 |
rng = list(range(ln))
|
310 |
arr = [pm for _ in rng]
|
311 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
312 |
#return pool.map(infer,arr)
|
313 |
-
ret = infer[32+ln,32](
|
314 |
return ret
|
315 |
|
316 |
-
@gpu(cache=True)
|
317 |
-
# @
|
318 |
-
|
319 |
-
# @cpu1(cache=True)
|
320 |
-
# @cpu2(cache=True)
|
321 |
def ui():
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
326 |
|
327 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
328 |
with gr.Column(elem_id="col-container"):
|
@@ -372,20 +384,21 @@ def ui():
|
|
372 |
|
373 |
gr.on(
|
374 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
375 |
-
fn=handle
|
376 |
)
|
377 |
demo.queue().launch()
|
378 |
|
379 |
-
@gpu(cache=True)
|
380 |
-
# @
|
381 |
-
|
382 |
-
# @cpu1(cache=True)
|
383 |
-
# @cpu2(cache=True)
|
384 |
def pre():
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
389 |
|
390 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
391 |
pipe.scheduler = DDIMScheduler(
|
@@ -402,15 +415,21 @@ def pre():
|
|
402 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
403 |
|
404 |
# @gpu(cache=True)
|
405 |
-
# @
|
406 |
-
|
407 |
-
@cpu1(cache=True)
|
408 |
-
# @cpu2(cache=True)
|
409 |
def entry():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
411 |
mp.set_start_method("spawn", force=True)
|
412 |
-
pre
|
413 |
-
ui
|
414 |
|
415 |
# entry
|
416 |
|
|
|
27 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
28 |
#import jax
|
29 |
#import jax.numpy as jnp
|
30 |
+
from numba import jit as cpu, cuda
|
31 |
from numba.cuda import jit as gpu
|
32 |
|
33 |
# optimization:
|
34 |
|
35 |
# @gpu(cache=True)
|
36 |
+
# @cpu(cache=True)
|
|
|
|
|
|
|
37 |
|
38 |
# logging
|
39 |
|
|
|
115 |
|
116 |
# functionality
|
117 |
|
118 |
+
# @gpu(cache=True)
|
119 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
120 |
+
# @cpu(cache=True)
|
121 |
+
def run(cmd):
|
122 |
+
try:
|
123 |
+
tx = cuda.threadIdx.x
|
124 |
+
bx = cuda.blockIdx.x
|
125 |
+
dx = cuda.blockDim.x
|
126 |
+
pos = tx + bx * dx
|
127 |
+
except:
|
128 |
+
pos = 0
|
129 |
+
|
130 |
+
cmd=cmd[pos]
|
131 |
|
132 |
result = subprocess.run(cmd, shell=True, capture_output=True, env=None)
|
133 |
if result.returncode != 0:
|
|
|
137 |
sys.exit()
|
138 |
return result
|
139 |
|
140 |
+
# @gpu(cache=True)
|
141 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
142 |
+
# @cpu(cache=True)
|
143 |
+
def translate(args):
|
144 |
+
try:
|
145 |
+
tx = cuda.threadIdx.x
|
146 |
+
bx = cuda.blockIdx.x
|
147 |
+
dx = cuda.blockDim.x
|
148 |
+
pos = tx + bx * dx
|
149 |
+
except:
|
150 |
+
pos = 0
|
151 |
+
|
152 |
+
text=text[pos]
|
153 |
+
lang=lang[pos]
|
154 |
|
155 |
if text == None or lang == None:
|
156 |
return ""
|
|
|
181 |
translated = text
|
182 |
try:
|
183 |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
|
184 |
+
trgt_lang = html.xpath'//*[@class="target-language"]')[0].text_content().lower().strip()
|
185 |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
|
186 |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
|
187 |
if trgt_lang == lang:
|
|
|
192 |
print(ret)
|
193 |
return ret
|
194 |
|
195 |
+
# @gpu(cache=True)
|
196 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
197 |
+
# @cpu(cache=True)
|
198 |
+
def generate_random_string(length):
|
199 |
+
try:
|
200 |
+
tx = cuda.threadIdx.x
|
201 |
+
bx = cuda.blockIdx.x
|
202 |
+
dx = cuda.blockDim.x
|
203 |
+
pos = tx + bx * dx
|
204 |
+
except:
|
205 |
+
pos = 0
|
206 |
+
|
207 |
+
length=length[pos]
|
208 |
|
209 |
characters = string.ascii_letters + string.digits
|
210 |
return ''.join(random.choice(characters) for _ in range(length))
|
211 |
|
212 |
@gpu(cache=True)
|
213 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
214 |
+
# @cpu(cache=True)
|
215 |
+
def Piper(image,positive,negative,motion):
|
216 |
+
try:
|
217 |
+
tx = cuda.threadIdx.x
|
218 |
+
bx = cuda.blockIdx.x
|
219 |
+
dx = cuda.blockDim.x
|
220 |
+
pos = tx + bx * dx
|
221 |
+
except:
|
222 |
+
pos = 0
|
223 |
+
|
224 |
+
image=image[pos]
|
225 |
+
positive=positive[pos]
|
226 |
+
negative=negative[pos]
|
227 |
+
motion=motion[pos]
|
228 |
|
229 |
global last_motion
|
230 |
global ip_loaded
|
|
|
262 |
)
|
263 |
|
264 |
@gpu(cache=True)
|
265 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
266 |
+
# @cpu(cache=True)
|
267 |
+
def infer(pm):
|
268 |
+
try:
|
269 |
+
tx = cuda.threadIdx.x
|
270 |
+
bx = cuda.blockIdx.x
|
271 |
+
dx = cuda.blockDim.x
|
272 |
+
pos = tx + bx * dx
|
273 |
+
except:
|
274 |
+
pos = 0
|
275 |
+
|
276 |
+
pm = pm[pos]
|
277 |
|
278 |
print("infer: started")
|
279 |
|
280 |
p1 = pm["p"]
|
281 |
+
name = generate_random_string([12])+".png"
|
282 |
|
283 |
neg = pm["n"]
|
284 |
if neg != "":
|
|
|
291 |
|
292 |
if pm["i"] == None:
|
293 |
return None
|
294 |
+
out = Piper[32,32]([pm["i"]],[posi],[neg],[pm["m"]])
|
295 |
export_to_gif(out.frames[0],name,fps=fps)
|
296 |
return name
|
297 |
|
298 |
+
# @gpu(cache=True)
|
299 |
+
@cpu(cache=True,nopython=True,parallel=True)
|
300 |
+
# @cpu(cache=True)
|
301 |
+
def handle(i,m,p1,p2,result):
|
302 |
+
try:
|
303 |
+
tx = cuda.threadIdx.x
|
304 |
+
bx = cuda.blockIdx.x
|
305 |
+
dx = cuda.blockDim.x
|
306 |
+
pos = tx + bx * dx
|
307 |
+
except:
|
308 |
+
pos = 0
|
309 |
+
|
310 |
+
i=i[pos]
|
311 |
+
m=m[pos]
|
312 |
+
p1=p1[pos]
|
313 |
+
p2=p2[pos]
|
314 |
+
result=result[pos]
|
315 |
+
|
316 |
+
p1_en = translate([p1],["english"])
|
317 |
+
p2_en = translate([p2],["english"])
|
318 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
319 |
ln = len(result)
|
320 |
rng = list(range(ln))
|
321 |
arr = [pm for _ in rng]
|
322 |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
323 |
#return pool.map(infer,arr)
|
324 |
+
ret = infer[32+ln,32](arr)
|
325 |
return ret
|
326 |
|
327 |
+
# @gpu(cache=True)
|
328 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
329 |
+
@cpu(cache=True)
|
|
|
|
|
330 |
def ui():
|
331 |
+
try:
|
332 |
+
tx = cuda.threadIdx.x
|
333 |
+
bx = cuda.blockIdx.x
|
334 |
+
dx = cuda.blockDim.x
|
335 |
+
pos = tx + bx * dx
|
336 |
+
except:
|
337 |
+
pos = 0
|
338 |
|
339 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
340 |
with gr.Column(elem_id="col-container"):
|
|
|
384 |
|
385 |
gr.on(
|
386 |
triggers=[run_button.click, prompt.submit, prompt2.submit],
|
387 |
+
fn=handle,inputs=[[img],[motion],[prompt],[prompt2],[result]],outputs=result
|
388 |
)
|
389 |
demo.queue().launch()
|
390 |
|
391 |
+
# @gpu(cache=True)
|
392 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
393 |
+
@cpu(cache=True)
|
|
|
|
|
394 |
def pre():
|
395 |
+
try:
|
396 |
+
tx = cuda.threadIdx.x
|
397 |
+
bx = cuda.blockIdx.x
|
398 |
+
dx = cuda.blockDim.x
|
399 |
+
pos = tx + bx * dx
|
400 |
+
except:
|
401 |
+
pos = 0
|
402 |
|
403 |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
404 |
pipe.scheduler = DDIMScheduler(
|
|
|
415 |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
|
416 |
|
417 |
# @gpu(cache=True)
|
418 |
+
# @cpu(cache=True,nopython=True,parallel=True)
|
419 |
+
@cpu(cache=True)
|
|
|
|
|
420 |
def entry():
|
421 |
+
try:
|
422 |
+
tx = cuda.threadIdx.x
|
423 |
+
bx = cuda.blockIdx.x
|
424 |
+
dx = cuda.blockDim.x
|
425 |
+
pos = tx + bx * dx
|
426 |
+
except:
|
427 |
+
pos = 0
|
428 |
+
|
429 |
os.chdir(os.path.abspath(os.path.dirname(__file__)))
|
430 |
mp.set_start_method("spawn", force=True)
|
431 |
+
pre()
|
432 |
+
ui()
|
433 |
|
434 |
# entry
|
435 |
|