import os import re import spaces as spaces1, spaces as spaces2 import random import string import torch import requests import gradio as gr import numpy as np from lxml.html import fromstring #from transformers import pipeline from torch import multiprocessing as mp from torch.multiprocessing import Pool as Pool #from pathos.multiprocessing import ProcessPool as Pool #from pathos.threading import ThreadPool as Pool #from diffusers.pipelines.flux import FluxPipeline #from diffusers.utils import export_to_gif #from huggingface_hub import hf_hub_download #from safetensors.torch import load_file from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image #import jax #import jax.numpy as jnp def port_inc(): env = os.getenv("CUSTOM_PORT") if env == None: os.environ["CUSTOM_PORT"]="7860" else: os.environ["CUSTOM_PORT"]=str(int(env)+1) def pipe_t2i(): PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda") return PIPE def pipe_i2i(): PIPE = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") PIPE.unet = torch.compile(PIPE.unet, mode="reduce-overhead", fullgraph=True) return PIPE def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' resp = requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ) content = resp.content html = fromstring(content) translated = text try: src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() if trgt_lang == lang: translated = trgt_text except: print(f'Translation Warning: Failed To Translate!') ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces1.GPU(duration=40) def Piper1(_do): print("starting piper1") retu = pp1( _do, height=512, width=512, num_inference_steps=4, max_sequence_length=256, guidance_scale=0 ) print("returning piper1") return retu @spaces2.GPU(duration=40) def Piper2(img,posi,neg): retu = pp2( prompt=posi, negative_prompt=neg, image=img ) return retu def tok(pipe,txt): toks = pipe.tokenizer(txt)['input_ids'] print(toks) return toks css=""" input, input::placeholder { text-align: center !important; } *, *::placeholder { direction: ltr !important; font-family: Suez One !important; } h1,h2,h3,h4,h5,h6,span,p,pre { width: 100% !important; text-align: center !important; display: block !important; } footer { display: none !important; } #col-container { margin: 0 auto !important; max-width: 15cm !important; } .image-container { aspect-ratio: 512 / 512 !important; } .dropdown-arrow { display: none !important; } *:has(.btn), .btn { width: 100% !important; margin: 0 auto !important; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ def infer1(p): print("infer1: started") p1 = p["a"] print(f'prompt 1: {p1}') p2 = p["b"] print(f'prompt 2: {p2}') name = generate_random_string(12)+".png" print(f'name: {name}') _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused'] if p1 != "": _do.append(f'{p1}') posi = " ".join(_do) print(posi) output = Piper1(posi) output.images[0].save(name) return name def infer2(p): print("infer2: started") p1 = p["a"] p2 = p["b"] name = p["c"] if p2 != "": _dont = f'{p2} where in {p1}' neg = _dont else: return name img = load_image(name).convert("RGB") output2 = Piper2(img,p1,neg) output2.images[0].save("_"+name) return "_"+name def run(p1,p2,*result): p1_en = translate(p1,"english") p2_en = translate(p2,"english") p = {"a":p1_en,"b":p2_en} ln = len(result) print("images: "+str(ln)) rng = list(range(ln)) arr1 = [p for _ in rng] pool1 = Pool(ln) out1 = list(pool1.imap(infer1,arr1)) pool1.close() pool1.join() pool1.clear() arr2 = [{"a":p1_en,"b":p2_en,"c":out1[_]} for _ in rng] pool2 = Pool(ln) out2 = list(pool2.imap(infer2,arr2)) pool2.close() pool2.join() pool2.clear() return out2 def main(): global result global pp1 global pp2 result=[] pp1=pipe_t2i() pp2=pipe_i2i() mp.set_start_method("spawn", force=True) with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE IMAGE GENERATOR """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="INCLUDE", container=False, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="EXCLUDE", container=False, max_lines=1 ) with gr.Row(): run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) run_button.click(fn=run,inputs=[prompt,prompt2,*result],outputs=result) demo.queue().launch() if __name__ == "__main__": main()