import spaces import gradio as gr #from tempfile import NamedTemporaryFile import numpy as np import random from diffusers import StableDiffusionPipeline as DiffusionPipeline import torch #from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor import requests from lxml.html.soupparser import fromstring #pool = ProcessPoolExecutor(100) #pool.__enter__() model_id = "runwayml/stable-diffusion-v1-5" device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) pipe = pipe.to(device) def he_to_en(prompt): html_str = requests.get( url = "https://translate.google.com", params = {"sl": "iw", "tl": "en", "op": "translate", "text": prompt} ).text() tree = fromstring(html_str) english = tree.xpath('span[lang="en"]/span/span/text()')[0] return english def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(25) def infer(prompt): name = generate_random_string(12)+".png" image = pipe(he_to_en(prompt)).images[0].save(name) return name css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image Generator Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False, type='filepath') run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()