import gradio as gr #from tempfile import NamedTemporaryFile import numpy as np import random import string from diffusers import StableDiffusionPipeline as DiffusionPipeline import torch from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor import requests from lxml.html.soupparser import fromstring pool = ProcessPoolExecutor(4) pool.__enter__() model_id = "runwayml/stable-diffusion-v1-5" device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) pipe = pipe.to(device) def translate(text,lang): html_str = requests.get( url = "https://translate.google.com", params = {"sl": "auto", "tl": lang, "op": "translate", "text": text} ).text() tree = fromstring(html_str) translated = tree.xpath('span[lang="'+lang+'"]/span/span/text()')[0] return translated def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) def infer(prompt): name = generate_random_string(12)+".png" image = pipe(translate(prompt,"en")).images[0].save(name) return name css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image Generator Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False, type='filepath') run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()