# built-in import os import subprocess import logging import re import random from string import ascii_letters, digits import requests import sys import warnings # external #import spaces import torch import gradio as gr from numpy import asarray as array from lxml.html import fromstring #from transformers import pipeline #from diffusers.pipelines.flux import FluxPipeline from diffusers.utils import export_to_gif, load_image from diffusers.models.modeling_utils import ModelMixin from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel #import jax #import jax.numpy as jnp from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool, uint8 as rgb from numba.cuda import jit as gpu, grid, as_cuda_array as tensor2array from numba.types import unicode_type as string from PIL.Image import fromarray as array2image import numpy as np # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) handler2 = logging.StreamHandler(sys.stderr) handler2.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler2.setFormatter(formatter) root.addHandler(handler2) # output data out_pipe=array([""]) last_motion=array([""]) # constant data dtype = torch.float16 device = "cuda" #repo = "ByteDance/AnimateDiff-Lightning" #ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" base = "emilianJR/epiCRealism" #base = "SG161222/Realistic_Vision_V6.0_B1_noVAE" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype) #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False) adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device) # precision data fast=True fps=10 time=1 width=384 height=768 step=40 accu=10 # ui data css=""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; max-width: 15cm; } .image-container { aspect-ratio: """+str(width)+"/"+str(height)+""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ # torch pipe pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device) pipe.scheduler = DDIMScheduler( clip_sample=False, beta_start=0.00085, beta_end=0.012, beta_schedule="linear", timestep_spacing="trailing", steps_offset=1 ) pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipe.enable_vae_slicing() pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) # functionality def run(cmd): return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout) def xpath_finder(str,pattern): try: return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip() except: return "" def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' content = str(requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ).content) translated = text src_lang = xpath_finder(content,'//*[@class="source-language"]') trgt_lang = xpath_finder(content,'//*[@class="target-language"]') src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*') trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*') if trgt_lang == lang: translated = trgt_text ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) @gpu(void( rgb[:], string[:], string[:], string[:] )) def calc(img,p1,p2,motion): global out_pipe global last_motion global pipe x = grid(1) if last_motion[0] != motion: pipe.unload_lora_weights() if inp[3] != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.fuse_lora() pipe.set_adapters("motion", [0.7]) last_motion[0] = motion pipe.to(device,dtype) if p2=="": out_pipe[x] = pipe( prompt=p1, height=height, width=width, ip_adapter_image=array2image(img).convert("RGB").resize((width,height)), num_inference_steps=step, guidance_scale=accu, num_frames=(fps*time) ) out_pipe[x] = pipe( prompt=p1, negative_prompt=p2, height=height, width=width, ip_adapter_image=array2image(img).convert("RGB").resize((width,height)), num_inference_steps=step, guidance_scale=accu, num_frames=(fps*time) ) def handle(*inp): inp[1] = translate(inp[1],"english") inp[2] = translate(inp[2],"english") if inp[0] == None: return None if inp[2] != "": inp[2] = f"{inp[2]} where in the image" _do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"] if inp[1] != "": _do.append(f"a new {inp[1]} content in the image") inp[1] = ", ".join(_do) ln = len(result) inp[0] = array(inp[0]) inp[1] = array(inp[1]) inp[2] = array(inp[2]) inp[3] = array(inp[3]) calc[ln,32](*inp) for i in range(ln): name = generate_random_string(12)+".png" export_to_gif(out_pipe[i].frames[0],name,fps=fps) out_pipe[i] = name return out_pipe def ui(): with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE GIF CREATOR """) with gr.Row(): global img img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil") with gr.Row(): global prompt prompt = gr.Textbox( elem_id="prompt", placeholder="INCLUDE", container=False, max_lines=1 ) with gr.Row(): global prompt2 prompt2 = gr.Textbox( elem_id="prompt2", placeholder="EXCLUDE", container=False, max_lines=1 ) with gr.Row(): global motion motion = gr.Dropdown( label='CAMERA', show_label=True, container=True, choices=[ ("(No Effect)", ""), ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), ], value="", interactive=True ) with gr.Row(): global run_button run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): global result result = [] result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) demo.queue().launch() @gpu(void()) def events(): gr.on( triggers=[ run_button.click, prompt.submit, prompt2.submit ], fn=handle, inputs=[img,prompt,prompt2,motion], outputs=result ) def entry(): os.chdir(os.path.abspath(os.path.dirname(__file__))) ui() events[1,32]() # entry entry() # end