# built-in import os import subprocess import logging import re import random from string import ascii_letters, digits import requests import sys import warnings # external #import spaces import torch import gradio as gr from numpy import array from lxml.html import fromstring #from transformers import pipeline #from diffusers.pipelines.flux import FluxPipeline from diffusers.utils import export_to_gif, load_image from diffusers.models.modeling_utils import ModelMixin from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel #import jax #import jax.numpy as jnp from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool from numba.cuda import jit as gpu, grid from numba.types import unicode_type as string # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) handler2 = logging.StreamHandler(sys.stderr) handler2.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler2.setFormatter(formatter) root.addHandler(handler2) # data out=array([""]) inp=[] last_motion=array([""]) dtype = torch.float16 device = "cuda" #repo = "ByteDance/AnimateDiff-Lightning" #ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" base = "emilianJR/epiCRealism" #base = "SG161222/Realistic_Vision_V6.0_B1_noVAE" vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype) #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False) adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device) fast=True fps=10 time=1 width=384 height=768 step=40 accu=10 css=""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; max-width: 15cm; } .image-container { aspect-ratio: """+str(width)+"/"+str(height)+""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ # functionality def run(cmd): return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout) def xpath_finder(str,pattern): try: return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip() except: return "" def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' content = str(requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ).content) translated = text src_lang = xpath_finder(content,'//*[@class="source-language"]') trgt_lang = xpath_finder(content,'//*[@class="target-language"]') src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*') trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*') if trgt_lang == lang: translated = trgt_text ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) @gpu(void()) def calc(): global inp global out global last_motion x = grid(1) if last_motion[0] != inp[3]: pipe.unload_lora_weights() if inp[3] != "": pipe.load_lora_weights(inp[3], adapter_name="motion") pipe.fuse_lora() pipe.set_adapters([3], [0.7]) last_motion[0] = inp[3] pipe.to(device,dtype) if inp[2]=="": out[x] = pipe( prompt=inp[1], height=height, width=width, ip_adapter_image=inp[0].convert("RGB").resize((width,height)), num_inference_steps=step, guidance_scale=accu, num_frames=(fps*time) ) out[x] = pipe( prompt=inp[1], negative_prompt=inp[2], height=height, width=width, ip_adapter_image=inp[0].convert("RGB").resize((width,height)), num_inference_steps=step, guidance_scale=accu, num_frames=(fps*time) ) def handle(*args): global inp global out inp = args out = array([],dtype=string) inp[1] = translate(inp[1],"english") inp[2] = translate(inp[2],"english") if inp[0] == None: return None if inp[2] != "": inp[2] = f"{inp[2]} where in the image" _do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"] if inp[1] != "": _do.append(f"a new {inp[1]} content in the image") inp[1] = ", ".join(_do) ln = len(result) calc[ln,32]() for i in range(ln): name = generate_random_string[1,32](12)+".png" export_to_gif(out[i].frames[0],name,fps=fps) out[i] = name return out def ui(): with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE IMAGE GENERATOR """) with gr.Row(): global img img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil") with gr.Row(): global prompt prompt = gr.Textbox( elem_id="prompt", placeholder="INCLUDE", container=False, max_lines=1 ) with gr.Row(): global prompt2 prompt2 = gr.Textbox( elem_id="prompt2", placeholder="EXCLUDE", container=False, max_lines=1 ) with gr.Row(): global motion motion = gr.Dropdown( label='CAMERA', show_label=True, container=True, choices=[ ("(No Effect)", ""), ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), ], value="", interactive=True ) with gr.Row(): global run_button run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): global result result = [] result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) demo.queue().launch() @gpu(void()) def pre(): global pipe pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device) pipe.scheduler = DDIMScheduler( clip_sample=False, beta_start=0.00085, beta_end=0.012, beta_schedule="linear", timestep_spacing="trailing", steps_offset=1 ) pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipe.enable_vae_slicing() pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) @gpu(void()) def events(): gr.on( triggers=[ run_button.click, prompt.submit, prompt2.submit ], fn=handle, inputs=[img,prompt,prompt2,motion], outputs=result ) def entry(): os.chdir(os.path.abspath(os.path.dirname(__file__))) pre[1,32]() ui() events[1,32]() # entry entry() # end