File size: 11,071 Bytes
61c89cd
 
 
4deddd3
e21a983
 
 
 
 
9c588a7
e21a983
 
 
fb14070
 
8faa958
61c89cd
 
 
8a2ea7d
06d3f6e
e21a983
4deddd3
6db6a8d
e21a983
 
 
 
688d8e9
6db6a8d
61c89cd
 
9d3a848
 
 
 
 
 
 
 
 
 
 
 
 
 
6db6a8d
 
552490f
562b4d5
a1e8f93
 
a0f86a3
 
3b44ab7
0fc6336
1b7ec1b
552490f
239a40a
 
 
 
 
6db6a8d
 
688d8e9
 
e9a8d12
 
89af836
 
688d8e9
89af836
562b4d5
6db6a8d
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
7985d5f
552490f
 
 
 
 
 
 
688d8e9
e7348c9
72c1344
24869b8
 
 
 
e7348c9
24869b8
 
e7348c9
f8ed4da
7d100e0
e7348c9
 
8a757aa
688d8e9
7aa37aa
 
4deddd3
 
 
0c5849d
7aa37aa
fb14070
 
fc523d1
084f948
a00bc49
d849b8e
 
 
 
 
 
20bb366
c6d02b3
9f1f2bf
98eb307
 
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
084f948
84291d5
7206ba2
a597e6b
48e1ac1
084f948
f2fa35d
d849b8e
 
 
 
 
 
9c588a7
83d3e5a
 
61c89cd
fc523d1
a99276a
b4f9b4b
b8d8aa1
8a2ea7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807349f
8a2ea7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4afc319
 
49bbe75
6db6a8d
843e793
 
091a4dd
843e793
89af836
fc523d1
89af836
 
843e793
 
 
 
 
455379c
4deddd3
 
 
d2ffdac
0c5849d
6db6a8d
7758507
 
 
86f936d
f94caf3
239a40a
f94caf3
 
 
6db6a8d
f94caf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455379c
f94caf3
455379c
b7b18e5
b43b190
 
 
 
 
 
4afc319
b43b190
 
 
f94caf3
 
b43b190
455379c
b43b190
27a4916
843e793
e13a4c7
61c89cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

# built-in

from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial

# external

import spaces
import torch
import gradio as gr
from pathos.multiprocessing import ProcessPool as Pool
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline, DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerAncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel

# logging

warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
handler2 = logging.StreamHandler(sys.stderr)
handler2.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler2.setFormatter(formatter)
root.addHandler(handler2)

# constant data

dtype = torch.float16
device = "cuda"
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
#base = "emilianJR/epiCRealism"
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)

# variable data

last_motion=""
result = []

# precision data

seq=512
fast=False
fps=10
time=1
width=896
height=896
step=50
accu=7.5

# ui data

css="".join(["""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
    max-width: 15cm;
}
.image-container {
    aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""])

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

# torch pipes

pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter).to(device)
pipe.scheduler = DDIMScheduler(
    clip_sample=False,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="linear",
    timestep_spacing="trailing",
    steps_offset=1
)
#pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)

pipe_flux = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to(device,dtype=dtype)

# Parallelism

def parallel(func,*args):
    with Pool(nodes=len(args)) as pool:
        res = pool.imap(func, *args)
    return list(res)
        
# functionality
        
def run(cmd):
    return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)

def xpath_finder(str,pattern):
    try:
        return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
    except:
        return ""

def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    content = str(requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    ).content)
    translated = text
    src_lang = xpath_finder(content,'//*[@class="source-language"]')
    trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
    src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
    trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
    if trgt_lang == lang:
        translated = trgt_text
    ret = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret
    
def generate_random_string(length):
    characters = str(ascii_letters + digits)
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=140)
def pipe_generate(img,p1,p2,motion):
    global last_motion
    global pipe

    if last_motion != motion:
        if last_motion != "":
            pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.fuse_lora()
            pipe.set_adapters("motion", [0.7])
        last_motion = motion

    pipe.to(device,dtype=dtype)

    if img == None:
        img = pipe(
            prompt=p1,
            height=height,
            width=width,
            guidance_scale=accu,
            num_inference_steps=step,
            max_sequence_length=seq,
            generator=torch.Generator("cuda").manual_seed(0)
        ).images[0]

    return pipe(
        prompt=p1,
        negative_prompt=p2,
        height=height,
        width=width,
        ip_adapter_image=img.convert("RGB"),
        num_inference_steps=step,
        guidance_scale=accu,
        num_frames=(fps*time)
    )

def handle_generate(*inp):

    inp = list(inp)
    
    inp[1] = translate(inp[1],"english")
    inp[2] = translate(inp[2],"english")

    if inp[2] != "":
        inp[2] = f", {inp[2]}"

    inp[2] = f"(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck{inp[2]}"
    
    _do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"]
    if inp[1] != "":
        _do.append(f"a new {inp[1]} content in the image")
    inp[1] = ", ".join(_do)
    
    ln = len(result)
    parallel_args = [inp for i in range(ln)]
    
    pipe_out = parallel( pipe_generate, *parallel_args )
    names = []
    for i in pipe_out:
        name = generate_random_string(12)+".png"
        export_to_gif(i.frames[0],name,fps=fps)
        names.append( name )
    return names

def ui():
    global result
    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""
                # MULTI-LANGUAGE GIF CREATOR
            """)
            with gr.Row():
                img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
            with gr.Row():
                prompt = gr.Textbox(
                    elem_id="prompt",
                    placeholder="INCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                prompt2 = gr.Textbox(
                    elem_id="prompt2",
                    placeholder="EXCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                    motion = gr.Dropdown(
                        label='CAMERA',
                        show_label=True,
                        container=True,
                        choices=[
                            ("(No Effect)", ""),
                            ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                            ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                            ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                            ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                            ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                            ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                            ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                            ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                        ],
                        value="",
                        interactive=True
                    )
            with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
            with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))

        gr.on(
            triggers=[
                run_button.click,
                prompt.submit,
                prompt2.submit
            ],
            fn=handle_generate,
            inputs=[img,prompt,prompt2,motion],
            outputs=result
        )
        demo.queue().launch()

# entry

if __name__ == "__main__":
    os.chdir(os.path.abspath(os.path.dirname(__file__)))
    ui()

# end