File size: 9,423 Bytes
f1052d9
a67a3c8
8aec9cb
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
bb63a49
d78e1f7
ce53544
842b929
ce53544
bb63a49
 
 
 
 
 
 
 
 
994733c
9f1f2bf
38d67a2
9f1f2bf
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
 
 
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
b4f9b4b
ae40afc
c87c14d
ae40afc
 
b4f9b4b
 
 
 
7219c3f
 
bb63a49
7219c3f
 
 
bb63a49
f2d1065
7219c3f
 
 
 
 
 
 
 
bb63a49
7219c3f
cde99b9
 
bb63a49
ae40afc
 
7219c3f
 
cde99b9
9642724
7219c3f
a9dd5f4
 
210ed13
f86add6
a345db9
 
840cd7b
647941b
0ec3daa
840cd7b
a345db9
0ec3daa
a345db9
763a02d
34c1550
33f3309
 
 
210ed13
0ec3daa
 
33f3309
f285313
c3c961a
210ed13
2daa864
 
cacb176
91c50b4
db40b0c
f7a31e7
2daa864
210ed13
 
aac4d05
32ecfac
1acb407
bb63a49
0b4c2e7
 
f44b741
7219c3f
f2d1065
 
7219c3f
67f570c
59eda4a
f2d1065
59eda4a
 
67f570c
 
 
59eda4a
86f936d
7219c3f
8eabfee
59eda4a
edc4d19
cb17486
59eda4a
 
cb17486
0e5f0ad
cb17486
83b0d34
7219c3f
a9dd5f4
f2d1065
91229ed
 
 
86f936d
91229ed
86e141f
c1fef6d
 
 
bb63a49
 
 
 
c87c14d
7219c3f
 
 
 
 
 
 
6b11cde
59eda4a
c1fef6d
bb63a49
c1fef6d
c87c14d
 
 
59eda4a
 
 
 
bb63a49
59eda4a
 
bb63a49
59eda4a
bb63a49
 
 
 
c350929
bb63a49
59eda4a
bb63a49
c1fef6d
bb63a49
 
c009b83
 
 
 
 
 
 
 
59eda4a
 
 
 
 
 
 
 
c009b83
 
 
7219c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c009b83
 
 
 
 
bb63a49
1fe0d57
59eda4a
 
1fe0d57
c015b60
51883a2
 
c1fef6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch import multiprocessing as mp
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
import jax
import jax.numpy as jnp

def forest_schnell():
    PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
    return PIPE
    
def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def progress_callback(i, t, z):
    global progress
    progress((i+1, step))

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=45)
def Piper(name,positive_prompt,motion):
    global step
    global fps
    global time
    global last_motion
    
    print("starting piper")

    if motion_loaded != motion:
        pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.set_adapters(["motion"], [0.7])
        last_motion = motion

    out = pipe(
        positive_prompt,
        height=512,
        width=512,
        num_inference_steps=step,
        guidance_scale=1,
        callback=progress_callback,
        callback_step=1,
        frames=fps*time
    )

    export_to_gif(out.frames[0],name,fps=fps)
    return name

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    direction: ltr !important;
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
    width: 100% !important;
    text-align: center !important;
    display: block !important;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto !important;
    max-width: 15cm !important;
 }
.image-container {
    aspect-ratio: 512 / 512 !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(.btn), .btn {
    width: 100% !important;
    margin: 0 auto !important;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

def infer(pm):
        print("infer: started")
    
        p1 = pm["p"]
        name = generate_random_string(12)+".png"
        neg = pm["n"]

        if neg != "":
            neg=,f' (((({neg}))))'
        _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
        if p1 != "":
            _do.append(f'{p1}')
        posi = " ".join(_do)+neg

        return Piper(name,posi,pm["m"])

def run(m,p1,p2,*result):
    
        p1_en = translate(p1,"english")
        p2_en = translate(p2,"english")
        pm = {"p":p1_en,"n":p2_en,"m":m}
        ln = len(result)
        print("images: "+str(ln))
        rng = list(range(ln))
    
        arr = [pm for _ in rng]
        pool = Pool(ln)
        out = list(pool.imap(infer,arr))
        pool.close()
        pool.join()
        pool.clear()

        return out

def main():

    global result
    global pipe
    global device
    global step
    global dtype
    global progress
    global fps
    global time
    global last_motion

    last_motion=None
    fps=40
    time=5
    device = "cuda"
    dtype = torch.bfloat16
    result=[]
    step = 2

    progress=gr.Progress()
    progress((0, step))

    #base="SG161222/Realistic_Vision_V6.0_B1_noVAE"
    #vae="stabilityai/sd-vae-ft-mse-original"
    #repo = "ByteDance/SDXL-Lightning"
    #ckpt = f"sdxl_lightning_{step}step_unet.safetensors"

    #unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device)
    #unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)

    base = "emilianJR/epiCRealism"
    repo = "ByteDance/AnimateDiff-Lightning"
    ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"

    adapter = MotionAdapter().to(device, dtype)
    adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device), strict=False)

    pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype, variant="fp16").to(dtype=dtype)
    pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
    
    mp.set_start_method("spawn", force=True)

    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""
                # MULTI-LANGUAGE IMAGE GENERATOR
            """)
            with gr.Row():
                prompt = gr.Textbox(
                    elem_id="prompt",
                    placeholder="INCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                prompt2 = gr.Textbox(
                    elem_id="prompt",
                    placeholder="EXCLUDE",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                motion = gr.Dropdown(
                    label='Motion',
                    choices=[
                        ("Default", ""),
                        ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
                        ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
                        ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
                        ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
                        ("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
                        ("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
                        ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
                        ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
                    ],
                    value="",
                    interactive=True
                )
            with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
            with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                
        gr.on(
            triggers=[run_button.click, prompt.submit, prompt2.submit],
            fn=run,inputs=[motion,prompt,prompt2,*result],outputs=result
        )
        demo.queue().launch()

if __name__ == "__main__":
    main()