Spaces:
Sleeping
Sleeping
File size: 9,423 Bytes
f1052d9 a67a3c8 8aec9cb 210ed13 b1328e8 210ed13 b4f9b4b a58c3bb ecc81cb bb63a49 d78e1f7 ce53544 842b929 ce53544 bb63a49 994733c 9f1f2bf 38d67a2 9f1f2bf c6d02b3 9f1f2bf 1d16cc9 9f1f2bf c6d02b3 2c7ffe4 a597e6b fd34825 706151f c6e402b 84291d5 7206ba2 a597e6b 48e1ac1 758f177 84291d5 f2fa35d 369a3fa 397731d 544df84 f2fa35d eb977a1 83d3e5a b4f9b4b ae40afc c87c14d ae40afc b4f9b4b 7219c3f bb63a49 7219c3f bb63a49 f2d1065 7219c3f bb63a49 7219c3f cde99b9 bb63a49 ae40afc 7219c3f cde99b9 9642724 7219c3f a9dd5f4 210ed13 f86add6 a345db9 840cd7b 647941b 0ec3daa 840cd7b a345db9 0ec3daa a345db9 763a02d 34c1550 33f3309 210ed13 0ec3daa 33f3309 f285313 c3c961a 210ed13 2daa864 cacb176 91c50b4 db40b0c f7a31e7 2daa864 210ed13 aac4d05 32ecfac 1acb407 bb63a49 0b4c2e7 f44b741 7219c3f f2d1065 7219c3f 67f570c 59eda4a f2d1065 59eda4a 67f570c 59eda4a 86f936d 7219c3f 8eabfee 59eda4a edc4d19 cb17486 59eda4a cb17486 0e5f0ad cb17486 83b0d34 7219c3f a9dd5f4 f2d1065 91229ed 86f936d 91229ed 86e141f c1fef6d bb63a49 c87c14d 7219c3f 6b11cde 59eda4a c1fef6d bb63a49 c1fef6d c87c14d 59eda4a bb63a49 59eda4a bb63a49 59eda4a bb63a49 c350929 bb63a49 59eda4a bb63a49 c1fef6d bb63a49 c009b83 59eda4a c009b83 7219c3f c009b83 bb63a49 1fe0d57 59eda4a 1fe0d57 c015b60 51883a2 c1fef6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from transformers import pipeline
from torch import multiprocessing as mp
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
from diffusers.pipelines.flux import FluxPipeline
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
import jax
import jax.numpy as jnp
def forest_schnell():
PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
return PIPE
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def progress_callback(i, t, z):
global progress
progress((i+1, step))
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=45)
def Piper(name,positive_prompt,motion):
global step
global fps
global time
global last_motion
print("starting piper")
if motion_loaded != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
last_motion = motion
out = pipe(
positive_prompt,
height=512,
width=512,
num_inference_steps=step,
guidance_scale=1,
callback=progress_callback,
callback_step=1,
frames=fps*time
)
export_to_gif(out.frames[0],name,fps=fps)
return name
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
direction: ltr !important;
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
width: 100% !important;
text-align: center !important;
display: block !important;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto !important;
max-width: 15cm !important;
}
.image-container {
aspect-ratio: 512 / 512 !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(.btn), .btn {
width: 100% !important;
margin: 0 auto !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
def infer(pm):
print("infer: started")
p1 = pm["p"]
name = generate_random_string(12)+".png"
neg = pm["n"]
if neg != "":
neg=,f' (((({neg}))))'
_do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
if p1 != "":
_do.append(f'{p1}')
posi = " ".join(_do)+neg
return Piper(name,posi,pm["m"])
def run(m,p1,p2,*result):
p1_en = translate(p1,"english")
p2_en = translate(p2,"english")
pm = {"p":p1_en,"n":p2_en,"m":m}
ln = len(result)
print("images: "+str(ln))
rng = list(range(ln))
arr = [pm for _ in rng]
pool = Pool(ln)
out = list(pool.imap(infer,arr))
pool.close()
pool.join()
pool.clear()
return out
def main():
global result
global pipe
global device
global step
global dtype
global progress
global fps
global time
global last_motion
last_motion=None
fps=40
time=5
device = "cuda"
dtype = torch.bfloat16
result=[]
step = 2
progress=gr.Progress()
progress((0, step))
#base="SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae="stabilityai/sd-vae-ft-mse-original"
#repo = "ByteDance/SDXL-Lightning"
#ckpt = f"sdxl_lightning_{step}step_unet.safetensors"
#unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device)
#unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
base = "emilianJR/epiCRealism"
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
adapter = MotionAdapter().to(device, dtype)
adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device), strict=False)
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype, variant="fp16").to(dtype=dtype)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
mp.set_start_method("spawn", force=True)
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# MULTI-LANGUAGE IMAGE GENERATOR
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="INCLUDE",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt",
placeholder="EXCLUDE",
container=False,
max_lines=1
)
with gr.Row():
motion = gr.Dropdown(
label='Motion',
choices=[
("Default", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
gr.on(
triggers=[run_button.click, prompt.submit, prompt2.submit],
fn=run,inputs=[motion,prompt,prompt2,*result],outputs=result
)
demo.queue().launch()
if __name__ == "__main__":
main() |