File size: 3,851 Bytes
b4f9b4b
 
210ed13
f043c9b
210ed13
b1328e8
62c5b0c
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
9b79250
76b48d0
62c5b0c
 
210ed13
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
3ed5fef
93b8891
61582d5
 
 
 
 
 
93b8891
 
758f177
 
 
 
f0dedb6
758f177
 
 
 
61582d5
f0dedb6
 
758f177
 
61582d5
5087a64
758f177
 
 
 
 
3ed5fef
b4f9b4b
 
 
 
 
cbed2ab
62c5b0c
b4f9b4b
b9d2cc5
93b8891
 
b4f9b4b
210ed13
 
 
 
0a810bc
b9d2cc5
 
 
210ed13
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
b9d2cc5
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(16)
pool.__enter__()

model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    resp = requests.post(
        url = "https://www.bing.com/ttranslatev3",
        params = {
            'isVertical': '1',
            'IG': '25FEDD45BDB744CF85D101C01E6596C0',
            'IID': 'translator.5026'
        },
        data = {
            'fromLang': 'auto-detect',
            'to': lang,
            'token': 'MLfPKZhAXMWZirPdlpeEfN8DB58dZKR-',
            'key': '1722119087131',
            'text': text,
            'tryFetchingGenderDebiasedTranslations': 'true'
        },
        headers = {'User-Agent': random.choice(user_agents)}
    )
    print(resp)
    jsn = resp.json()
    print(jsn)
    translated = jsn[0]["translations"][0]["text"]
    return translated

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=20)
def infer(prompt):
    name = generate_random_string(12)+".png"
    english_prompt = "Generate the most true and authentic and real and genuine single photograph, for " + translate(prompt,"en")
    print(f'Final prompt: {english_prompt}')
    image = pipe(english_prompt).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-height: 90vh;
}
#image-container {
    aspect-ratio: 1 / 1;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()