File size: 6,366 Bytes
f1052d9
a67a3c8
8aec9cb
210ed13
b1328e8
210ed13
b4f9b4b
a58c3bb
 
ecc81cb
51883a2
d78e1f7
ce53544
842b929
ce53544
af97d45
bc115c5
 
 
38d67a2
ad61842
166635a
568c974
66fc53c
9f1f2bf
994733c
9f1f2bf
38d67a2
9f1f2bf
c6d02b3
9f1f2bf
1d16cc9
9f1f2bf
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
fd34825
 
706151f
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
84291d5
 
f2fa35d
369a3fa
397731d
 
 
 
 
544df84
f2fa35d
eb977a1
83d3e5a
 
 
b4f9b4b
 
 
 
 
578a231
38d67a2
f2d1065
 
 
 
cde99b9
 
 
 
 
 
f2d1065
9642724
a9dd5f4
 
210ed13
f86add6
a345db9
 
840cd7b
647941b
0ec3daa
840cd7b
a345db9
0ec3daa
a345db9
763a02d
34c1550
33f3309
 
 
210ed13
0ec3daa
 
33f3309
f285313
c3c961a
210ed13
2daa864
 
cacb176
91c50b4
db40b0c
f7a31e7
2daa864
210ed13
 
aac4d05
32ecfac
1acb407
0b4c2e7
 
f44b741
f2d1065
 
 
67f570c
 
f2d1065
67f570c
 
 
0c2eae0
86f936d
a9dd5f4
8eabfee
38d67a2
edc4d19
cb17486
38d67a2
cb17486
0e5f0ad
cb17486
83b0d34
91229ed
a9dd5f4
f2d1065
91229ed
 
 
86f936d
91229ed
86e141f
c1fef6d
 
 
 
 
 
 
 
d462f0c
c1fef6d
c009b83
 
 
 
 
 
 
 
ad61842
c009b83
 
 
 
 
 
 
 
38d67a2
c009b83
1fe0d57
 
 
 
c015b60
51883a2
 
c1fef6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
#from transformers import pipeline
from torch import multiprocessing as mp
#from torch.multiprocessing import Pool
#from pathos.multiprocessing import ProcessPool as Pool
from pathos.threading import ThreadPool as Pool
#from diffusers.pipelines.flux import FluxPipeline
#from diffusers.utils import export_to_gif
#from huggingface_hub import hf_hub_download
#from safetensors.torch import load_file
from diffusers import DiffusionPipeline
#from diffusers.utils import load_image
#import jax
#import jax.numpy as jnp

def pipe_t2i():
    PIPE = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to("cuda")
    return PIPE
    
def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    content = resp.content
    html = fromstring(content)
    translated = text
    try:
        src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
        trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
        src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
        trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
        if trgt_lang == lang:
            translated = trgt_text
    except:
        print(f'Translation Warning: Failed To Translate!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=40)
def Piper(name,posi):
    print("starting piper")
    
    ret1 = pp1(
        posi,
        height=512,
        width=512,
        num_inference_steps=4,
        max_sequence_length=256,
        guidance_scale=0
    )
    ret1.images[0].save(name)

    return name

css="""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    direction: ltr !important;
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
    width: 100% !important;
    text-align: center !important;
    display: block !important;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto !important;
    max-width: 15cm !important;
 }
.image-container {
    aspect-ratio: 512 / 512 !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(.btn), .btn {
    width: 100% !important;
    margin: 0 auto !important;
}
"""

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
}
"""

def infer(p):
        print("infer: started")
    
        p1 = p["a"]
        name = generate_random_string(12)+".png"

        _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
        if p1 != "":
            _do.append(f'{p1}')
        posi = " ".join(_do)

        return Piper(name,posi)

def run(p1,*result):
    
        p1_en = translate(p1,"english")
        p = {"a":p1_en}
        ln = len(result)
        print("images: "+str(ln))
        rng = list(range(ln))
    
        arr = [p for _ in rng]
        pool = Pool(ln)
        out = list(pool.imap(infer,arr))
        pool.close()
        pool.join()
        pool.clear()

        return out

def main():

    global result
    global pp1

    result=[]
    pp1=pipe_t2i()

    mp.set_start_method("spawn", force=True)
    
    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(f"""
                # MULTI-LANGUAGE IMAGE GENERATOR
            """)
            with gr.Row():
                prompt = gr.Textbox(
                    elem_id="prompt",
                    placeholder="DESCRIPTION",
                    container=False,
                    max_lines=1
                )
            with gr.Row():
                run_button = gr.Button("START",elem_classes="btn",scale=0)
            with gr.Row():
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
                result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))

        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=run,inputs=[prompt,*result],outputs=result
        )
        demo.queue().launch()

if __name__ == "__main__":
    main()