Spaces:
Sleeping
Sleeping
File size: 7,999 Bytes
61c89cd 4deddd3 e21a983 9c588a7 e21a983 fb14070 8faa958 61c89cd fb4e2c7 06d3f6e e21a983 6db6a8d e21a983 169516c e21a983 e611e71 70bd56f 6db6a8d 61c89cd 9d3a848 302bc3b b32fdcf 302bc3b 9d3a848 6db6a8d 205077f b32fdcf e453455 552490f 239a40a c2185df 239a40a 6db6a8d 965e92d 13aff24 7e211bb 13aff24 e453455 f1deaa5 13aff24 562b4d5 6db6a8d 3b90fe5 552490f 3b90fe5 552490f 3b90fe5 7985d5f 552490f fef1dcd a5c674b fef1dcd fb4e2c7 fef1dcd a5c674b fef1dcd 552490f 688d8e9 e7348c9 fe55e41 ffe6ef9 fe55e41 ffe6ef9 fe55e41 13aff24 e611e71 f031971 3e4f13d fe55e41 e7348c9 fb14070 98ac56e fc523d1 a99276a b4f9b4b b8d8aa1 7e211bb 657170e 8a2ea7d b32fdcf 8a2ea7d b32fdcf 8a2ea7d f1deaa5 b32fdcf e7149a6 8a2ea7d 3aaecd5 8a2ea7d c2185df 8a2ea7d 169516c 1142cdf f1deaa5 7e211bb a8e1c8c 169516c 7e211bb 7f19912 c2185df 169516c b32fdcf 169516c 8a2ea7d 65d8433 169516c e7149a6 f1deaa5 169516c efcf006 b32fdcf 8a2ea7d b32fdcf 4afc319 c2185df b32fdcf 6db6a8d fef1dcd 091a4dd 1c7f27b a5c674b fc523d1 13aff24 b32fdcf 1c7f27b a5c674b 4a033c0 13aff24 b32fdcf eebdd59 b32fdcf 843e793 72683cf 4deddd3 6ad2af8 657170e 6dbaba7 72683cf 169516c 6ad2af8 085f347 e515cf0 c2185df 86f936d f94caf3 239a40a 6ad2af8 762a623 fb4e2c7 762a623 43f45da fb4e2c7 43f45da fb4e2c7 e7149a6 43f45da 1a51e72 762a623 43f45da b32fdcf b7b18e5 b43b190 4afc319 657170e e515cf0 b43b190 f94caf3 b43b190 455379c b43b190 27a4916 843e793 e13a4c7 b32fdcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# built-in
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial
# external
import spaces
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_video, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline, CogVideoXImageToVideoPipeline
from PIL import Image, ImageDraw, ImageFont
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
base = "black-forest-labs/FLUX.1-schnell"
# variable data
additional_image = None
# precision data
seq=512
fps=15
width=768
height=512
image_steps=8
video_steps=50
img_accu=9
vid_accu=7
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
e.target.setAttribute("last_value",e.target.value);
});
document.querySelector("div#prompt2 input").addEventListener("input",function(e){
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
e.target.value = e.target.getAttribute("last_value");
e.target.removeAttribute("last_value");
}
});
}
"""
# torch pipes
def disabled_safety_checker(images, clip_input):
if len(images.shape)==4:
num_images = images.shape[0]
return images, [False]*num_images
else:
return images, False
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
image_pipe.enable_model_cpu_offload()
image_pipe.safety_checker = disabled_safety_checker
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16
).to(device)
video_pipe.vae.enable_tiling()
video_pipe.vae.enable_slicing()
video_pipe.safety_checker = disabled_safety_checker
# functionality
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=80)
def pipe_generate(img,p1,p2,time,title):
global pipe
if img is None:
img = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=img_accu,
num_images_per_prompt=1,
num_inference_steps=image_steps,
max_sequence_length=seq,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images[0]
additional_image = True
if title != "":
draw = ImageDraw.Draw(img)
textheight=min(( width // 10 ), ( height // 5 ))
rows = 1
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
textwidth = draw.textlength(title,font)
x = (width - textwidth) // 2
y = (height - (textheight * rows // 2)) // 2
draw.text((x, y), title, (255,255,255), font=font)
additional_image = img if additional_image else None
if time == 0.0:
return img
return video_pipe(
prompt=p1,
negative_prompt=p2.replace("textual content, ",""),
image=img,
num_inference_steps=video_steps,
guidance_scale=vid_accu,
num_videos_per_prompt=1,
num_frames=(fps*time),
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).frames[0]
def handle_generate(*_inp):
additional_image = None
inp = list(_inp)
#inp[1] = translate(inp[1],"english")
#inp[2] = translate(inp[2],"english")
if len(inp[2]) >= 2:
inp[2] = "," + inp[2].strip(",").strip(" ")
inp[2] = f"textual,labeled,divined,distorted,discontinuous,ugly,blurry,low resolution,motionless,static,wrong body anatomy{inp[2]}"
if len(inp[1]) >= 2:
inp[1] = "," + inp[1].strip(",").strip(" ")
inp[1] = f'realistic,natural,genuine,reasonable,highly detailed{inp[1]}'
print(f"""
Positive: {inp[1]}
Negative: {inp[2]}
""")
pipe_out = pipe_generate(*inp)
name = generate_random_string(12) + ( ".png" if inp[3] == 0.0 else ".mp4" )
if inp[3] == 0.0:
pipe_out.save(name)
else:
export_to_video(pipe_out,name,fps=fps)
if inp[3] == 0.0:
return name, None
else:
return additional_image, name
def ui():
global result
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
gr.Markdown(f"""
# Photo Motion - PNG/MP4 Generator
""")
with gr.Row():
title = gr.Textbox(
placeholder="Logo title",
container=False,
max_lines=1
)
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Included keywords",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="Excluded keywords",
container=False,
max_lines=1
)
with gr.Row():
time = gr.Slider(
minimum=0.0,
maximum=3.0,
value=0.0,
step=1.0,
label="Duration (0s = PNG)"
)
with gr.Row(elem_id="col-container"):
with gr.Column():
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
with gr.Column():
res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
with gr.Column():
res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False)
with gr.Row():
run_button = gr.Button("Start!",elem_classes="btn",scale=0)
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle_generate,
inputs=[img,prompt,prompt2,time,title],
outputs=[res_img,res_vid]
)
demo.queue().launch()
# entry
if __name__ == "__main__":
os.chdir(os.path.abspath(os.path.dirname(__file__)))
ui()
# end |