File size: 11,500 Bytes
61c89cd
 
 
4deddd3
e21a983
 
 
 
 
9c588a7
e21a983
 
 
fb14070
 
8faa958
61c89cd
 
 
06d3f6e
e21a983
6db6a8d
e21a983
 
 
 
b32fdcf
70bd56f
6db6a8d
61c89cd
 
9d3a848
 
 
b32fdcf
9d3a848
 
 
 
 
6db6a8d
 
205077f
 
76ec6ef
205077f
 
76ec6ef
b32fdcf
a0f86a3
1b7ec1b
552490f
239a40a
 
 
 
6db6a8d
 
688d8e9
76ec6ef
 
89af836
 
4a033c0
 
562b4d5
6db6a8d
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
552490f
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
7985d5f
552490f
 
 
 
 
 
 
688d8e9
e7348c9
b32fdcf
 
24869b8
 
 
 
e7348c9
24869b8
 
e7348c9
7d100e0
e7348c9
 
fb14070
98ac56e
fc523d1
084f948
a00bc49
d849b8e
 
 
 
 
 
20bb366
c6d02b3
9f1f2bf
b32fdcf
 
c6d02b3
 
2c7ffe4
 
a597e6b
 
 
 
 
 
 
b32fdcf
fd34825
706151f
084f948
84291d5
7206ba2
a597e6b
48e1ac1
084f948
f2fa35d
d849b8e
 
 
 
 
 
b32fdcf
83d3e5a
61c89cd
fc523d1
a99276a
b4f9b4b
b8d8aa1
b32fdcf
8a2ea7d
 
 
b32fdcf
 
8a2ea7d
b32fdcf
8a2ea7d
 
 
b32fdcf
8a2ea7d
 
b32fdcf
3aaecd5
8a2ea7d
 
b32fdcf
 
 
 
 
 
 
 
 
 
 
 
8a2ea7d
 
 
 
 
 
 
 
 
b32fdcf
8a2ea7d
b32fdcf
4afc319
b32fdcf
6db6a8d
843e793
 
091a4dd
843e793
eebdd59
fc523d1
53d4500
b32fdcf
843e793
eebdd59
4a033c0
53d4500
b32fdcf
 
 
eebdd59
 
 
b32fdcf
 
843e793
72683cf
4deddd3
9480815
eabdfc8
70bd56f
 
 
 
 
 
9480815
72683cf
 
6dbaba7
72683cf
6dbaba7
72683cf
86f936d
f94caf3
239a40a
f94caf3
762a623
b32fdcf
762a623
 
 
 
b32fdcf
 
762a623
b32fdcf
 
 
 
 
762a623
 
b32fdcf
762a623
 
f94caf3
3a6781f
762a623
 
b32fdcf
762a623
 
 
b32fdcf
 
 
10307b8
b32fdcf
10307b8
b32fdcf
 
 
762a623
b32fdcf
762a623
b32fdcf
762a623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72683cf
b32fdcf
 
b7b18e5
b43b190
 
 
 
 
 
4afc319
b32fdcf
b43b190
 
f94caf3
 
b43b190
455379c
b43b190
27a4916
843e793
e13a4c7
b32fdcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

# built-in

from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial

# external

import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler, StableDiffusionPipeline
from PIL import Image, ImageDraw, ImageFont

# logging

warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)

# constant data

if torch.cuda.is_available():
    device = "cuda"
    dtype = torch.float16
else:
    device = "cpu"
    dtype = torch.float16

base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)

# variable data

last_motion=""

# precision data

seq=512
fast=True
fps=30
width=896
height=896
step=100
accu=9.0

# ui data

css="".join(["""
input, input::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
#col-container {
    margin: 0 auto;
}
.image-container {
    aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""])

js="""
function custom(){
    document.querySelector("div#prompt input").setAttribute("maxlength","38")
    document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""

# torch pipes

image_pipe = StableDiffusionPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device)
pipe = AnimateDiffPipeline.from_pretrained(base, torch_dtype=dtype, motion_adapter=adapter).to(device)
pipe.scheduler = DDIMScheduler(
    clip_sample=False,
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="linear",
    timestep_spacing="trailing",
    steps_offset=1
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)

# functionality

def run(cmd):
    return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)

def xpath_finder(str,pattern):
    try:
        return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
    except:
        return ""

def translate(text,lang):
    if text == None or lang == None:
        return ""       
    text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip()
    lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip()    
    if text == "" or lang == "":
        return ""
    if len(text) > 38:
        raise Exception("Translation Error: Too long text!")
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip()
    query_text = f'Please translate {padded_chars}, into {lang}'
    url = f'https://www.google.com/search?q={query_text}'
    content = str(requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    ).content)
    translated = text
    src_lang = xpath_finder(content,'//*[@class="source-language"]')
    trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
    src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
    trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
    if trgt_lang == lang:
        translated = trgt_text
    ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip()
    return ret
    
def generate_random_string(length):
    characters = str(ascii_letters + digits)
    return ''.join(random.choice(characters) for _ in range(length))

def pipe_generate(img,p1,p2,motion,time,title):
    global last_motion
    global pipe

    if img is None:
        img = image_pipe(
            prompt=p1,
            negative_prompt=p2,
            height=height,
            width=width,
            guidance_scale=accu,
            num_images_per_prompt=1,
            num_inference_steps=step,
            max_sequence_length=seq,
            need_safetycheck=False,
            generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
        ).images[0]

    if time == 0.0:
        return img

    if last_motion != motion:
        if last_motion != "":
            pipe.unload_lora_weights()
        if motion != "":
            pipe.load_lora_weights(motion, adapter_name="motion")
            pipe.fuse_lora()
            pipe.set_adapters("motion", [0.7])
        last_motion = motion

    return pipe(
        prompt=p1,
        negative_prompt=p2,
        height=height,
        width=width,
        ip_adapter_image=img.convert("RGB"),
        num_inference_steps=step,
        guidance_scale=accu,
        num_frames=(fps*time)
    ).frames[0]

def handle_generate(*_inp):

    inp = list(_inp)
    
    inp[1] = translate(inp[1],"english")
    inp[2] = translate(inp[2],"english")

    if inp[2] != "":
        inp[2] = " which is related to: " + inp[2] + "."

    inp[2] = f"The content which is faked and errored and dreamy and unreal and off topic and pixelated and deformed iris and deformed pupils and semi-realistic and cgi and 3d and render and sketch and cartoon and drawing and anime and cropped and out of frame and worst quality and low quality and jpeg artifacts and ugly and duplicate and weird and morbid and mutilated and extra fingers and mutated hands and poorly drawn hands and poorly drawn face and mutation and deformed and blurry and dehydrated and bad anatomy and bad proportions and extra limbs and cloned face and disfigured and unspecified and gross and proportions and malformed limbs and missing arms and missing legs and extra arms and extra legs and fused fingers and too many fingers and long neck content{inp[2]}"

    if inp[1] != "":
        inp[1] = " which is related to: " + inp[1] + "."
    
    inp[1] = f'The content which is photographed and realistic and true and genuine and dynamic poze and authentic and deep field and reasonable and natural and best quality and focused and highly detailed content{inp[1]}'

    print(f"""

        Positive: {inp[1]}

        Negative: {inp[2]}

    """)
    
    pipe_out = pipe_generate(*inp)
    
    if inp[5] != "":
        draw = ImageDraw.Draw(pipe_out)
        textheight=32
        font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight)
        textwidth = draw.textlength(inp[5])
        x = (width - textwidth) // 2
        y = (height - textheight) // 2
        draw.text((x, y), inp[5],font=font)
        
    name = generate_random_string(12) + ( ".png" if time == 0 else ".gif" )
    if inp[4] == 0.0:
        pipe_out.save(name)
    else:
        export_to_gif(pipe_out,name,fps=fps)
    return name

def ui():
    global result
    with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
        gr.Markdown(f"""
            # MULTI-LANGUAGE GIF/PNG CREATOR
        """)
        with gr.Row(elem_id="col-container"):
            with gr.Column():
                with gr.Row():
                    img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
            with gr.Column(scale=0.66):
                with gr.Row():
                    title = gr.Textbox(
                        placeholder="Logo title",
                        container=False,
                        max_lines=1
                    )
                    prompt = gr.Textbox(
                        elem_id="prompt",
                        placeholder="Included keywords",
                        container=False,
                        max_lines=1
                    )
                with gr.Row():
                    prompt2 = gr.Textbox(
                        elem_id="prompt2",
                        placeholder="Excluded keywords",
                        container=False,
                        max_lines=1
                    )
                with gr.Row():
                    time = gr.Slider(
                        minimum=0.0,
                        maximum=600.0,
                        value=0.0,
                        step=5.0,
                        label="GIF/PNG Duration (0s = PNG)"
                    )
                with gr.Row():
                        motion = gr.Dropdown(
                            label='GIF camera movement',
                            show_label=True,
                            container=False,
                            choices=[
                                ("(No Effect)", ""),
                                ("Zoom in", "guoyww/#animatediff-motion-lora-zoom-in"),
                                ("Zoom out", "guoyww/#animatediff-motion-lora-zoom-out"),
                                ("Tilt up", "guoyww/#animatediff-motion-lora-tilt-up"),
                                ("Tilt down", "guoyww/#animatediff-motion-lora-tilt-down"),
                                ("Pan left", "guoyww/#animatediff-motion-lora-pan-left"),
                                ("Pan right", "guoyww/#animatediff-motion-lora-pan-right"),
                                ("Roll left", "guoyww/#animatediff-motion-lora-rolling-anticlockwise"),
                                ("Roll right", "guoyww/#animatediff-motion-lora-rolling-clockwise"),
                            ],
                            value="",
                            interactive=True
                        )
                with gr.Row():
                    result = gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
        with gr.Row():
            run_button = gr.Button("Start!",elem_classes="btn",scale=0)

        gr.on(
            triggers=[
                run_button.click,
                prompt.submit,
                prompt2.submit
            ],
            fn=handle_generate,
            inputs=[img,prompt,prompt2,motion,time,title],
            outputs=result
        )
        demo.queue().launch()

# entry

if __name__ == "__main__":
    os.chdir(os.path.abspath(os.path.dirname(__file__)))
    ui()

# end