Spaces:
Sleeping
Sleeping
# built-in | |
from inspect import signature | |
import os | |
import subprocess | |
import logging | |
import re | |
import random | |
from string import ascii_letters, digits, punctuation | |
import requests | |
import sys | |
import warnings | |
import time | |
import asyncio | |
from functools import partial | |
# external | |
import torch | |
import gradio as gr | |
from numpy import asarray as array | |
from lxml.html import fromstring | |
from diffusers.utils import export_to_video, load_image | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file, save_file | |
from diffusers import StableDiffusionPipeline, CogVideoXImageToVideoPipeline | |
#from diffusers import AnimateDiffPipeline, DDIMScheduler | |
#from diffusers.models import AutoencoderKL, MotionAdapter | |
#from diffusers.schedulers import DPMSolverMultistepScheduler | |
from PIL import Image, ImageDraw, ImageFont | |
# logging | |
warnings.filterwarnings("ignore") | |
root = logging.getLogger() | |
root.setLevel(logging.WARN) | |
handler = logging.StreamHandler(sys.stderr) | |
handler.setLevel(logging.WARN) | |
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') | |
handler.setFormatter(formatter) | |
root.addHandler(handler) | |
# constant data | |
if torch.cuda.is_available(): | |
device = "cuda" | |
dtype = torch.float16 | |
else: | |
device = "cpu" | |
dtype = torch.float16 | |
#base = "emilianJR/epiCRealism" | |
base = "SG161222/Realistic_Vision_V5.1_noVAE" | |
vae_id = "stabilityai/sd-vae-ft-mse" | |
#motion_adapter = "guoyww/animatediff-motion-adapter-v1-5-3" | |
# variable data | |
last_motion="" | |
# precision data | |
seq=512 | |
fast=False | |
fps=30 | |
width=1024 | |
height=1024 | |
step=100 | |
accu=7 | |
# ui data | |
css="".join([""" | |
input, input::placeholder { | |
text-align: center !important; | |
} | |
*, *::placeholder { | |
font-family: Suez One !important; | |
} | |
h1,h2,h3,h4,h5,h6 { | |
width: 100%; | |
text-align: center; | |
} | |
footer { | |
display: none !important; | |
} | |
#col-container { | |
margin: 0 auto; | |
} | |
.image-container { | |
aspect-ratio: """,str(width),"/",str(height),""" !important; | |
} | |
.dropdown-arrow { | |
display: none !important; | |
} | |
*:has(>.btn) { | |
display: flex; | |
justify-content: space-evenly; | |
align-items: center; | |
} | |
.btn { | |
display: flex; | |
} | |
"""]) | |
js=""" | |
function custom(){ | |
document.querySelector("div#prompt input").setAttribute("maxlength","38") | |
document.querySelector("div#prompt2 input").setAttribute("maxlength","38") | |
} | |
""" | |
# torch pipes | |
image_pipe = StableDiffusionPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device) | |
#adapter = MotionAdapter.from_pretrained(motion_adapter, torch_dtype=dtype, safety_checker=None).to(device) | |
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device) | |
image_pipe.vae = vae | |
scheduler = DDIMScheduler.from_pretrained( | |
base, | |
subfolder="scheduler", | |
clip_sample=False, | |
timestep_spacing="linspace", | |
beta_schedule="linear", | |
steps_offset=1, | |
) | |
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained( | |
"THUDM/CogVideoX-5b-I2V", | |
torch_dtype=torch.bfloat16, | |
safety_checker=None | |
).to(device) | |
video_pipe.scheduler = scheduler2 | |
video_pipe.vae.enable_tiling() | |
video_pipe.vae.enable_slicing() | |
#pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") | |
video_pipe.enable_model_cpu_offload() | |
video_pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) | |
# functionality | |
def run(cmd): | |
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout) | |
def xpath_finder(str,pattern): | |
try: | |
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip() | |
except: | |
return "" | |
def translate(text,lang): | |
if text == None or lang == None: | |
return "" | |
text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip() | |
lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip() | |
if text == "" or lang == "": | |
return "" | |
if len(text) > 38: | |
raise Exception("Translation Error: Too long text!") | |
user_agents = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
] | |
padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip() | |
query_text = f'Please translate {padded_chars}, into {lang}' | |
url = f'https://www.google.com/search?q={query_text}' | |
content = str(requests.get( | |
url = url, | |
headers = { | |
'User-Agent': random.choice(user_agents) | |
} | |
).content) | |
translated = text | |
src_lang = xpath_finder(content,'//*[@class="source-language"]') | |
trgt_lang = xpath_finder(content,'//*[@class="target-language"]') | |
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*') | |
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*') | |
if trgt_lang == lang: | |
translated = trgt_text | |
ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip() | |
return ret | |
def generate_random_string(length): | |
characters = str(ascii_letters + digits) | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def pipe_generate(img,p1,p2,motion,time,title): | |
global last_motion | |
global pipe | |
if img is None: | |
img = image_pipe( | |
prompt=p1, | |
negative_prompt=p2, | |
height=height, | |
width=width, | |
guidance_scale=accu, | |
num_images_per_prompt=1, | |
num_inference_steps=step, | |
max_sequence_length=seq, | |
need_safetycheck=False, | |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) | |
).images[0] | |
if title != "": | |
draw = ImageDraw.Draw(pipe_out) | |
textheight=84 | |
font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight) | |
textwidth = draw.textlength(title,font) | |
x = (width - textwidth) // 2 | |
y = (height - textheight) // 2 | |
draw.text((x, y), title,font=font) | |
if time == 0.0: | |
return img | |
if last_motion != motion: | |
if last_motion != "": | |
pipe.unload_lora_weights() | |
if motion != "": | |
pipe.load_lora_weights(motion, adapter_name="motion") | |
pipe.fuse_lora() | |
pipe.set_adapters("motion", [0.7]) | |
last_motion = motion | |
return video_pipe( | |
prompt=p1, | |
negative_prompt=p2, | |
image=img, | |
num_inference_steps=step, | |
guidance_scale=accu, | |
num_videos_per_prompt=1, | |
num_frames=(fps*time), | |
need_safetycheck=False, | |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) | |
).frames[0] | |
def handle_generate(*_inp): | |
inp = list(_inp) | |
inp[1] = translate(inp[1],"english") | |
inp[2] = translate(inp[2],"english") | |
if inp[2] != "": | |
inp[2] = ", related to: " + inp[2] + "." | |
inp[2] = f"The content which is faked, errored, unreal, off topic, pixelated, deformed, and semi-realistic, cgi, 3d, sketch, cartoon, drawing, anime, cropped, out of frame, low quality, textual, jpeg artifacts, ugly, duplicated, weird, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutations, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck content{inp[2]}" | |
if inp[1] != "": | |
inp[1] = ", related to: " + inp[1] + "." | |
inp[1] = f'The content which is photographed, realistic, true, genuine, dynamic poze, authentic, deep field, reasonable, natural, best quality, focused, highly detailed content{inp[1]}' | |
print(f""" | |
Positive: {inp[1]} | |
Negative: {inp[2]} | |
""") | |
pipe_out = pipe_generate(*inp) | |
name = generate_random_string(12) + ( ".png" if time == 0 else ".mp4" ) | |
if inp[4] == 0.0: | |
pipe_out.save(name) | |
else: | |
export_to_video(pipe_out,name,fps=fps) | |
return name | |
def ui(): | |
global result | |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: | |
gr.Markdown(f""" | |
# MULTI-LANGUAGE MP4/PNG CREATOR | |
""") | |
with gr.Row(elem_id="col-container"): | |
with gr.Column(): | |
with gr.Row(): | |
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil") | |
with gr.Column(scale=0.66): | |
with gr.Row(): | |
title = gr.Textbox( | |
placeholder="Logo title", | |
container=False, | |
max_lines=1 | |
) | |
prompt = gr.Textbox( | |
elem_id="prompt", | |
placeholder="Included keywords", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
prompt2 = gr.Textbox( | |
elem_id="prompt2", | |
placeholder="Excluded keywords", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
time = gr.Slider( | |
minimum=0.0, | |
maximum=600.0, | |
value=0.0, | |
step=5.0, | |
label="MP4/PNG Duration (0s = PNG)" | |
) | |
with gr.Row(): | |
motion = gr.Dropdown( | |
label='GIF camera movement', | |
show_label=True, | |
container=False, | |
choices=[ | |
("(No Effect)", ""), | |
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
], | |
value="", | |
interactive=True | |
) | |
with gr.Row(): | |
result = gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False) | |
with gr.Row(): | |
run_button = gr.Button("Start!",elem_classes="btn",scale=0) | |
gr.on( | |
triggers=[ | |
run_button.click, | |
prompt.submit, | |
prompt2.submit | |
], | |
fn=handle_generate, | |
inputs=[img,prompt,prompt2,motion,time,title], | |
outputs=result | |
) | |
demo.queue().launch() | |
# entry | |
if __name__ == "__main__": | |
os.chdir(os.path.abspath(os.path.dirname(__file__))) | |
ui() | |
# end |