Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,19 +9,20 @@ import requests
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
from lxml.html import fromstring
|
12 |
-
from transformers import pipeline
|
13 |
from torch import multiprocessing as mp, nn
|
14 |
#from torch.multiprocessing import Pool
|
15 |
#from pathos.multiprocessing import ProcessPool as Pool
|
16 |
-
from pathos.threading import ThreadPool as Pool
|
17 |
-
from diffusers.pipelines.flux import FluxPipeline
|
18 |
from diffusers.utils import export_to_gif, load_image
|
19 |
from diffusers.models.modeling_utils import ModelMixin
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
from safetensors.torch import load_file, save_file
|
22 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
23 |
-
import jax
|
24 |
-
import jax.numpy as jnp
|
|
|
25 |
import sys
|
26 |
import warnings
|
27 |
|
@@ -210,17 +211,11 @@ def run(i,m,p1,p2,*result):
|
|
210 |
p2_en = translate(p2,"english")
|
211 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
212 |
ln = len(result)
|
213 |
-
print("Threads: "+str(ln))
|
214 |
rng = list(range(ln))
|
215 |
-
|
216 |
arr = [pm for _ in rng]
|
217 |
-
pool = Pool(ln)
|
218 |
-
out = list(pool.imap(infer,arr))
|
219 |
-
pool.close()
|
220 |
-
pool.join()
|
221 |
-
pool.clear()
|
222 |
|
223 |
-
|
|
|
224 |
|
225 |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
226 |
pipe.scheduler = DDIMScheduler(
|
|
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
from lxml.html import fromstring
|
12 |
+
#from transformers import pipeline
|
13 |
from torch import multiprocessing as mp, nn
|
14 |
#from torch.multiprocessing import Pool
|
15 |
#from pathos.multiprocessing import ProcessPool as Pool
|
16 |
+
#from pathos.threading import ThreadPool as Pool
|
17 |
+
#from diffusers.pipelines.flux import FluxPipeline
|
18 |
from diffusers.utils import export_to_gif, load_image
|
19 |
from diffusers.models.modeling_utils import ModelMixin
|
20 |
from huggingface_hub import hf_hub_download
|
21 |
from safetensors.torch import load_file, save_file
|
22 |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
|
23 |
+
#import jax
|
24 |
+
#import jax.numpy as jnp
|
25 |
+
from pyina.launchers import TorqueMpiPool as Pool
|
26 |
import sys
|
27 |
import warnings
|
28 |
|
|
|
211 |
p2_en = translate(p2,"english")
|
212 |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i}
|
213 |
ln = len(result)
|
|
|
214 |
rng = list(range(ln))
|
|
|
215 |
arr = [pm for _ in rng]
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
+
with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool:
|
218 |
+
return pool.map(infer,arr)
|
219 |
|
220 |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
221 |
pipe.scheduler = DDIMScheduler(
|