Yaron Koresh commited on
Commit
3071c09
·
verified ·
1 Parent(s): c0ebad0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -33,7 +33,7 @@ import gradio as gr
33
  from lxml.html import fromstring
34
  from huggingface_hub import hf_hub_download
35
  from safetensors.torch import load_file, save_file
36
- from diffusers import FluxPipeline
37
  from PIL import Image, ImageDraw, ImageFont
38
  from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
39
  from refiners.fluxion.utils import manual_seed
@@ -418,7 +418,7 @@ CHECKPOINTS = ESRGANUpscalerCheckpoints(
418
  )
419
 
420
  device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
421
- DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
422
  enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE, dtype=DTYPE)
423
 
424
  # logging
@@ -434,15 +434,15 @@ root.addHandler(handler)
434
 
435
  # constant data
436
 
437
- base = "black-forest-labs/FLUX.1-schnell"
438
 
439
  # precision data
440
 
441
- seq=256
442
  width=1536
443
  height=1536
444
- image_steps=8
445
- img_accu=0
446
 
447
  # ui data
448
 
@@ -502,7 +502,9 @@ function custom(){
502
 
503
  # torch pipes
504
 
505
- image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
 
 
506
  image_pipe.enable_model_cpu_offload()
507
  image_pipe.enable_vae_slicing()
508
  image_pipe.enable_vae_tiling()
@@ -511,7 +513,7 @@ image_pipe.enable_vae_tiling()
511
 
512
  def upscaler(
513
  input_image: Image.Image,
514
- prompt: str = "Photorealistic, Hyperrealistic, Realistic Photography, High-Quality Photography, Natural.",
515
  negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
516
  seed: int = int(str(random.random()).split(".")[1]),
517
  upscale_factor: int = 2,
@@ -613,13 +615,16 @@ def pipe_generate_image(p1,p2):
613
  imgs = image_pipe(
614
  prompt=p1,
615
  negative_prompt=p2,
 
616
  height=height,
617
  width=width,
 
618
  guidance_scale=img_accu,
619
  num_images_per_prompt=1,
620
  num_inference_steps=image_steps,
621
  max_sequence_length=seq,
622
- generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
 
623
  ).images
624
  log(f'RET pipe_generate')
625
  return imgs
 
33
  from lxml.html import fromstring
34
  from huggingface_hub import hf_hub_download
35
  from safetensors.torch import load_file, save_file
36
+ from diffusers import DiffusionPipeline
37
  from PIL import Image, ImageDraw, ImageFont
38
  from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
39
  from refiners.fluxion.utils import manual_seed
 
418
  )
419
 
420
  device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
421
+ DTYPE = dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
422
  enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE, dtype=DTYPE)
423
 
424
  # logging
 
434
 
435
  # constant data
436
 
437
+ MAX_SEED = np.iinfo(np.int32).max
438
 
439
  # precision data
440
 
441
+ seq=512
442
  width=1536
443
  height=1536
444
+ image_steps=50
445
+ img_accu=9.0
446
 
447
  # ui data
448
 
 
502
 
503
  # torch pipes
504
 
505
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
506
+ good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=dtype).to(device)
507
+ image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype, vae=taef1).to(device)
508
  image_pipe.enable_model_cpu_offload()
509
  image_pipe.enable_vae_slicing()
510
  image_pipe.enable_vae_tiling()
 
513
 
514
  def upscaler(
515
  input_image: Image.Image,
516
+ prompt: str = "Hyper realistic photography, Natural visual content.",
517
  negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
518
  seed: int = int(str(random.random()).split(".")[1]),
519
  upscale_factor: int = 2,
 
615
  imgs = image_pipe(
616
  prompt=p1,
617
  negative_prompt=p2,
618
+ progress=gr.Progress(track_tqdm=True),
619
  height=height,
620
  width=width,
621
+ safety_checker=None,
622
  guidance_scale=img_accu,
623
  num_images_per_prompt=1,
624
  num_inference_steps=image_steps,
625
  max_sequence_length=seq,
626
+ good_vae=good_vae,
627
+ generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
628
  ).images
629
  log(f'RET pipe_generate')
630
  return imgs