Yaron Koresh commited on
Commit
7f06f4f
·
verified ·
1 Parent(s): af97d45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -9,15 +9,14 @@ import gradio as gr
9
  import numpy as np
10
  from lxml.html import fromstring
11
  from pathos.threading import ThreadPool as Pool
12
- from diffusers import FlaxDiffusionPipeline
13
  #from diffusers.pipelines.flux import FluxPipeline
14
  #from diffusers.utils import export_to_gif
15
  #from huggingface_hub import hf_hub_download
16
  #from safetensors.torch import load_file
17
- #from diffusers import FlaxStableDiffusionXLPipeline
18
 
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
- pipe = FlaxDiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to(device)
21
 
22
  def translate(text,lang):
23
 
@@ -95,10 +94,10 @@ def Piper(_do,neg):
95
  return None
96
 
97
  @spaces.GPU(duration=25)
98
- def negator(_dont):
99
- neg = pipe.prepare_inputs(_dont)
100
- print(neg)
101
- return neg
102
 
103
  def infer(p1,p2):
104
  name = generate_random_string(12)+".png"
@@ -107,7 +106,7 @@ def infer(p1,p2):
107
  _do.append(f'{p1}')
108
  if p2 != "":
109
  _dont = f'{p2} where in {p1}'
110
- neg = negator(_dont)
111
  else:
112
  neg = None
113
  output = Piper('A '+" ".join(_do),neg)
 
9
  import numpy as np
10
  from lxml.html import fromstring
11
  from pathos.threading import ThreadPool as Pool
 
12
  #from diffusers.pipelines.flux import FluxPipeline
13
  #from diffusers.utils import export_to_gif
14
  #from huggingface_hub import hf_hub_download
15
  #from safetensors.torch import load_file
16
+ from diffusers import FlaxStableDiffusionPipeline
17
 
18
  device = "cuda" if torch.cuda.is_available() else "cpu"
19
+ pipe = FlaxStableDiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, token=os.getenv("hf_token")).to(device)
20
 
21
  def translate(text,lang):
22
 
 
94
  return None
95
 
96
  @spaces.GPU(duration=25)
97
+ def tok(txt):
98
+ toks = pipe.prepare_inputs(txt)
99
+ print(toks)
100
+ return toks
101
 
102
  def infer(p1,p2):
103
  name = generate_random_string(12)+".png"
 
106
  _do.append(f'{p1}')
107
  if p2 != "":
108
  _dont = f'{p2} where in {p1}'
109
+ neg = tok(_dont)
110
  else:
111
  neg = None
112
  output = Piper('A '+" ".join(_do),neg)