Yaron Koresh commited on
Commit
de30cb1
·
verified ·
1 Parent(s): 4a4a10c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -451,8 +451,8 @@ MAX_SEED = np.iinfo(np.int32).max
451
  # precision data
452
 
453
  seq=512
454
- image_steps=30
455
- img_accu=4.5
456
 
457
  # ui data
458
 
@@ -528,7 +528,7 @@ torch.cuda.empty_cache()
528
  def upscaler(
529
  input_image: Image.Image,
530
  prompt: str = "Masterpiece, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical.",
531
- negative_prompt: str = "Blurry, Distorted, Exceptional, Irregular, Unusual, Shiny, Smoothed, Polished, Low Quality, Worst Quality, Normal Quality, Anime Quality, Movies Quality.",
532
  seed: int = random.randint(0, MAX_SEED),
533
  upscale_factor: int = 2,
534
  controlnet_scale: float = 0.6,
@@ -594,8 +594,8 @@ def _summarize(text):
594
  toks = tokenizer.encode( prefix + text, return_tensors="pt", truncation=False)
595
  gen = model.generate(
596
  toks,
597
- length_penalty=2.0,
598
- num_beams=8,
599
  early_stopping=True,
600
  max_length=512
601
  )
@@ -603,7 +603,7 @@ def _summarize(text):
603
  log(f'RET _summarize with ret as {ret}')
604
  return ret
605
 
606
- def summarize(text, max_len=400):
607
  log(f'CALL summarize')
608
 
609
  words = text.split()
@@ -620,11 +620,12 @@ def summarize(text, max_len=400):
620
  text = summ
621
  words_length = len(text.split())
622
 
623
- while len(text) > max_len:
624
  summ = _summarize(text)
625
  if summ == text:
626
  return text
627
  text = summ
 
628
 
629
  log(f'RET summarize with text as {text}')
630
  return text
@@ -1319,9 +1320,9 @@ def handle_generation(h,w,d):
1319
  d = re.sub(r"([ \t]){1,}", " ", d)
1320
  d = re.sub(r"(\. \.)", ".", d).lower().strip()
1321
 
1322
- neg = f"Textual, Text, Blurry, Distorted, Exceptional, Irregular, Unusual, Shiny, Smoothed, Polished, Low Quality, Worst Quality, Normal Quality, Anime Quality, Movies Quality."
1323
  q = "\""
1324
- pos = f'Masterpiece, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical, { d if d == "" else ", " + d }'
1325
 
1326
  print(f"""
1327
  Positive: {pos}
 
451
  # precision data
452
 
453
  seq=512
454
+ image_steps=50
455
+ img_accu=8.5
456
 
457
  # ui data
458
 
 
528
  def upscaler(
529
  input_image: Image.Image,
530
  prompt: str = "Masterpiece, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical.",
531
+ negative_prompt: str = "Blurry, Distorted, Exceptional, Irregular, Unusual, Shiny, Smoothed, Polished, Low Quality, Worst Quality, Normal Quality, Anime Quality, Paint Quality, Movie Quality.",
532
  seed: int = random.randint(0, MAX_SEED),
533
  upscale_factor: int = 2,
534
  controlnet_scale: float = 0.6,
 
594
  toks = tokenizer.encode( prefix + text, return_tensors="pt", truncation=False)
595
  gen = model.generate(
596
  toks,
597
+ length_penalty=0.1,
598
+ num_beams=16,
599
  early_stopping=True,
600
  max_length=512
601
  )
 
603
  log(f'RET _summarize with ret as {ret}')
604
  return ret
605
 
606
+ def summarize(text, max_words=20):
607
  log(f'CALL summarize')
608
 
609
  words = text.split()
 
620
  text = summ
621
  words_length = len(text.split())
622
 
623
+ while words_length > max_words:
624
  summ = _summarize(text)
625
  if summ == text:
626
  return text
627
  text = summ
628
+ words_length = len(text.split())
629
 
630
  log(f'RET summarize with text as {text}')
631
  return text
 
1320
  d = re.sub(r"([ \t]){1,}", " ", d)
1321
  d = re.sub(r"(\. \.)", ".", d).lower().strip()
1322
 
1323
+ neg = f"Textual, Text, Blurry, Distorted, Exceptional, Irregular, Unusual, Shiny, Smoothed, Polished, Low Quality, Worst Quality, Normal Quality, Anime Quality, Paint Quality, Movie Quality."
1324
  q = "\""
1325
+ pos = f'Masterpiece, Best Quality, Hyper-Realistic, Super-Realistic, Natural, Reasonable, Logical{ "." if d == "" else ". " + d }'
1326
 
1327
  print(f"""
1328
  Positive: {pos}