Spaces:
Sleeping
Sleeping
commit
Browse files
app.py
CHANGED
@@ -38,7 +38,10 @@ from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler i
|
|
38 |
MultiUpscaler,
|
39 |
UpscalerCheckpoints,
|
40 |
)
|
|
|
41 |
|
|
|
|
|
42 |
|
43 |
Tile = tuple[int, int, Image.Image]
|
44 |
Tiles = list[tuple[int, int, list[Tile]]]
|
@@ -500,7 +503,7 @@ function custom(){
|
|
500 |
# torch pipes
|
501 |
|
502 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
503 |
-
image_pipe.enable_model_cpu_offload()
|
504 |
|
505 |
# functionality
|
506 |
|
@@ -509,7 +512,7 @@ def upscaler(
|
|
509 |
input_image: Image.Image,
|
510 |
prompt: str = "masterpiece, best quality, highres",
|
511 |
negative_prompt: str = "worst quality, low quality, normal quality",
|
512 |
-
seed: int =
|
513 |
upscale_factor: int = 8,
|
514 |
controlnet_scale: float = 0.6,
|
515 |
controlnet_decay: float = 1.0,
|
@@ -520,10 +523,15 @@ def upscaler(
|
|
520 |
num_inference_steps: int = 18,
|
521 |
solver: str = "DDIM",
|
522 |
) -> Image.Image:
|
|
|
|
|
|
|
523 |
manual_seed(seed)
|
524 |
|
525 |
solver_type: type[Solver] = getattr(solvers, solver)
|
526 |
|
|
|
|
|
527 |
enhanced_image = enhancer.upscale(
|
528 |
image=input_image,
|
529 |
prompt=prompt,
|
@@ -539,6 +547,8 @@ def upscaler(
|
|
539 |
solver_type=solver_type,
|
540 |
)
|
541 |
|
|
|
|
|
542 |
return enhanced_image
|
543 |
|
544 |
@spaces.GPU(duration=180)
|
@@ -547,12 +557,15 @@ def summarize_text(
|
|
547 |
pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
|
548 |
pegasus_model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
549 |
):
|
550 |
-
|
|
|
551 |
pegasus_tokenizer(text,return_tensors="pt").input_ids,
|
552 |
max_length=max_length,
|
553 |
num_beams=num_beams,
|
554 |
early_stopping=early_stopping
|
555 |
)[0], skip_special_tokens=True)
|
|
|
|
|
556 |
|
557 |
def generate_random_string(length):
|
558 |
characters = str(ascii_letters + digits)
|
@@ -560,7 +573,8 @@ def generate_random_string(length):
|
|
560 |
|
561 |
@spaces.GPU(duration=180)
|
562 |
def pipe_generate(p1,p2):
|
563 |
-
|
|
|
564 |
prompt=p1,
|
565 |
negative_prompt=p2,
|
566 |
height=height,
|
@@ -571,9 +585,13 @@ def pipe_generate(p1,p2):
|
|
571 |
max_sequence_length=seq,
|
572 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
573 |
).images[0]
|
|
|
|
|
574 |
|
575 |
def handle_generate(artist,song,genre,lyrics):
|
576 |
|
|
|
|
|
577 |
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
|
578 |
pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
|
579 |
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|
|
|
38 |
MultiUpscaler,
|
39 |
UpscalerCheckpoints,
|
40 |
)
|
41 |
+
from datetime import datetime
|
42 |
|
43 |
+
def log(msg):
|
44 |
+
print(f'{datetime.now().time()} {msg}')
|
45 |
|
46 |
Tile = tuple[int, int, Image.Image]
|
47 |
Tiles = list[tuple[int, int, list[Tile]]]
|
|
|
503 |
# torch pipes
|
504 |
|
505 |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
|
506 |
+
#image_pipe.enable_model_cpu_offload()
|
507 |
|
508 |
# functionality
|
509 |
|
|
|
512 |
input_image: Image.Image,
|
513 |
prompt: str = "masterpiece, best quality, highres",
|
514 |
negative_prompt: str = "worst quality, low quality, normal quality",
|
515 |
+
seed: int = int(str(random.random()).split(".")[1]),
|
516 |
upscale_factor: int = 8,
|
517 |
controlnet_scale: float = 0.6,
|
518 |
controlnet_decay: float = 1.0,
|
|
|
523 |
num_inference_steps: int = 18,
|
524 |
solver: str = "DDIM",
|
525 |
) -> Image.Image:
|
526 |
+
|
527 |
+
log(f'CALL upscaler')
|
528 |
+
|
529 |
manual_seed(seed)
|
530 |
|
531 |
solver_type: type[Solver] = getattr(solvers, solver)
|
532 |
|
533 |
+
log(f'DBG upscaler 1')
|
534 |
+
|
535 |
enhanced_image = enhancer.upscale(
|
536 |
image=input_image,
|
537 |
prompt=prompt,
|
|
|
547 |
solver_type=solver_type,
|
548 |
)
|
549 |
|
550 |
+
log(f'RET upscaler')
|
551 |
+
|
552 |
return enhanced_image
|
553 |
|
554 |
@spaces.GPU(duration=180)
|
|
|
557 |
pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
|
558 |
pegasus_model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
|
559 |
):
|
560 |
+
log(f'CALL summarize_text')
|
561 |
+
summary = pegasus_tokenizer.decode( pegasus_model.generate(
|
562 |
pegasus_tokenizer(text,return_tensors="pt").input_ids,
|
563 |
max_length=max_length,
|
564 |
num_beams=num_beams,
|
565 |
early_stopping=early_stopping
|
566 |
)[0], skip_special_tokens=True)
|
567 |
+
log(f'RET summarize_text with summary as {summary}')
|
568 |
+
return summary
|
569 |
|
570 |
def generate_random_string(length):
|
571 |
characters = str(ascii_letters + digits)
|
|
|
573 |
|
574 |
@spaces.GPU(duration=180)
|
575 |
def pipe_generate(p1,p2):
|
576 |
+
log(f'CALL pipe_generate')
|
577 |
+
img = image_pipe(
|
578 |
prompt=p1,
|
579 |
negative_prompt=p2,
|
580 |
height=height,
|
|
|
585 |
max_sequence_length=seq,
|
586 |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
|
587 |
).images[0]
|
588 |
+
log(f'RET pipe_generate')
|
589 |
+
return img
|
590 |
|
591 |
def handle_generate(artist,song,genre,lyrics):
|
592 |
|
593 |
+
log(f'CALL handle_generate')
|
594 |
+
|
595 |
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
|
596 |
pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
|
597 |
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
|