# built-in from inspect import signature import os import subprocess import logging import re import random from string import ascii_letters, digits, punctuation import requests import sys import warnings import time import asyncio from functools import partial # external import torch import gradio as gr from numpy import asarray as array from lxml.html import fromstring from diffusers.utils import export_to_video, load_image from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import StableDiffusionPipeline, CogVideoXImageToVideoPipeline, DDIMScheduler #, AnimateDiffPipeline from diffusers.models import AutoencoderKL #, MotionAdapter from PIL import Image, ImageDraw, ImageFont # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.WARN) handler = logging.StreamHandler(sys.stderr) handler.setLevel(logging.WARN) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) # constant data if torch.cuda.is_available(): device = "cuda" dtype = torch.float16 else: device = "cpu" dtype = torch.float16 #base = "emilianJR/epiCRealism" base = "SG161222/Realistic_Vision_V5.1_noVAE" vae_id = "stabilityai/sd-vae-ft-mse" #motion_adapter = "guoyww/animatediff-motion-adapter-v1-5-3" # variable data last_motion="" # precision data seq=512 fast=False fps=20 width=768 height=768 step=40 accu=7 # ui data css="".join([""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; } .image-container { aspect-ratio: """,str(width),"/",str(height),""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """]) js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ # torch pipes image_pipe = StableDiffusionPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device) #adapter = MotionAdapter.from_pretrained(motion_adapter, torch_dtype=dtype, safety_checker=None).to(device) vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device) image_pipe.vae = vae scheduler = DDIMScheduler.from_pretrained( base, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1, ) video_pipe = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16 ).to(device) video_pipe.scheduler = scheduler video_pipe.vae.enable_tiling() video_pipe.vae.enable_slicing() #pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") video_pipe.enable_model_cpu_offload() #pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) # functionality def run(cmd): return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout) def xpath_finder(str,pattern): try: return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip() except: return "" def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip() lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' content = str(requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ).content) translated = text src_lang = xpath_finder(content,'//*[@class="source-language"]') trgt_lang = xpath_finder(content,'//*[@class="target-language"]') src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*') trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*') if trgt_lang == lang: translated = trgt_text ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip() return ret def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) def pipe_generate(img,p1,p2,motion,time,title): global last_motion global pipe if img is None: img = image_pipe( prompt=p1, negative_prompt=p2, height=height, width=width, guidance_scale=accu, num_images_per_prompt=1, num_inference_steps=step, max_sequence_length=seq, need_safetycheck=False, generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) ).images[0] if title != "": draw = ImageDraw.Draw(pipe_out) textheight=84 font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight) textwidth = draw.textlength(title,font) x = (width - textwidth) // 2 y = (height - textheight) // 2 draw.text((x, y), title,font=font) if time == 0.0: return img if last_motion != motion: if last_motion != "": pipe.unload_lora_weights() if motion != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.fuse_lora() pipe.set_adapters("motion", [0.7]) last_motion = motion return video_pipe( prompt=p1, negative_prompt=p2, image=img, num_inference_steps=step, guidance_scale=accu, num_videos_per_prompt=1, num_frames=(fps*time), generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) ).frames[0] def handle_generate(*_inp): inp = list(_inp) inp[1] = translate(inp[1],"english") inp[2] = translate(inp[2],"english") if inp[2] != "": inp[2] = ", related to: " + inp[2] + "." inp[2] = f"The content which is faked, errored, unreal, off topic, pixelated, deformed, and semi-realistic, cgi, 3d, sketch, cartoon, drawing, anime, cropped, out of frame, low quality, textual, jpeg artifacts, ugly, duplicated, weird, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutations, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck content{inp[2]}" if inp[1] != "": inp[1] = ", related to: " + inp[1] + "." inp[1] = f'The content which is photographed, realistic, true, genuine, dynamic poze, authentic, deep field, reasonable, natural, best quality, focused, highly detailed content{inp[1]}' print(f""" Positive: {inp[1]} Negative: {inp[2]} """) pipe_out = pipe_generate(*inp) name = generate_random_string(12) + ( ".png" if inp[4] == 0 else ".mp4" ) if inp[4] == 0.0: pipe_out.save(name) else: export_to_video(pipe_out,name,fps=fps) if inp[4] == 0: return name, None else: return None, name def ui(): global result with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: gr.Markdown(f""" # MULTI-LANGUAGE MP4/PNG CREATOR """) with gr.Row(): title = gr.Textbox( placeholder="Logo title", container=False, max_lines=1 ) prompt = gr.Textbox( elem_id="prompt", placeholder="Included keywords", container=False, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="Excluded keywords", container=False, max_lines=1 ) with gr.Row(): time = gr.Slider( minimum=0.0, maximum=600.0, value=0.0, step=5.0, label="MP4/PNG Duration (0s = PNG)" ) motion = gr.Dropdown( label='GIF camera movement', show_label=True, container=False, choices=[ ("(No Effect)", ""), ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), ], value="", interactive=True ) with gr.Row(elem_id="col-container"): with gr.Column(): img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil") with gr.Column(): res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False) with gr.Column(): res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False) with gr.Row(): run_button = gr.Button("Start!",elem_classes="btn",scale=0) gr.on( triggers=[ run_button.click, prompt.submit, prompt2.submit ], fn=handle_generate, inputs=[img,prompt,prompt2,motion,time,title], outputs=[res_img,res_vid] ) demo.queue().launch() # entry if __name__ == "__main__": os.chdir(os.path.abspath(os.path.dirname(__file__))) ui() # end