# built-in import os import subprocess import logging import re import random from string import ascii_letters, digits, punctuation import requests import sys import warnings import time from concurrent.futures import ProcessPoolExecutor import threading import asyncio from queue import Queue as BlockingQueue from functools import partial # external import torch import gradio as gr from numpy import asarray as array from lxml.html import fromstring from diffusers.utils import export_to_gif, load_image from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerAncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) handler2 = logging.StreamHandler(sys.stderr) handler2.setLevel(logging.DEBUG) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler2.setFormatter(formatter) root.addHandler(handler2) # constant data dtype = torch.float16 device = "cuda" #repo = "ByteDance/AnimateDiff-Lightning" #ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" #base = "emilianJR/epiCRealism" base = "SG161222/Realistic_Vision_V6.0_B1_noVAE" #vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype) #unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False) adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device) # variable data last_motion="" result = [] # precision data fast=True fps=10 time=1 width=896 height=896 step=25 accu=7.5 # ui data css="".join([""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; max-width: 15cm; } .image-container { aspect-ratio: """,str(width),"/",str(height),""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """]) js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ # torch pipe pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter).to(device) pipe.scheduler = DDIMScheduler( clip_sample=False, beta_start=0.00085, beta_end=0.012, beta_schedule="linear", timestep_spacing="trailing", steps_offset=1 ) #pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) # Threading class TwoSidedQueue: def __init__(self, queue_in, queue_out): self._queue_in = queue_in self._queue_out = queue_out self._sides = { 'empty': queue_out, 'full': queue_out, 'get': queue_in, 'get_nowait': queue_in, 'join': queue_out, 'put': queue_out, 'put_nowait': queue_out, 'qsize': queue_out, 'task_done': queue_in, } def __getattr__(self, name): return getattr(self._sides.get(name, self._queue_in), name) class LaunchAsync: def __init__(self, coro, *args, **kwargs): self._coro = coro self._args = args self._kwargs = kwargs self._thread = None self._loop = None self._task = None self._queue_in = None self._queue_out = None self._size = 0 def size(self, size): self._size = size or 0 return self def put(self, data, *, timeout=None): """ `put` data in for the `coro` to `get` out. Will block if the maximum `size` was reached. Does nothing if the `coro` is dead. """ try: return asyncio.run_coroutine_threadsafe(self._queue_out.put(data), self._loop).result(timeout) except RuntimeError: if self._loop.is_running(): raise else: return None def get(self, *, timeout=None): """ `get` data out of the `coro` it `put` in. Will block if the queue is empty. Returns `None` if the `coro` is dead. """ try: return asyncio.run_coroutine_threadsafe(self._queue_in.get(), self._loop).result(timeout) except RuntimeError: if self._loop.is_running(): raise else: return None def dead(self): """ Return `true` if the other side is dead (the `coro` has exited, with or without error). """ return not self._loop.is_running() def __enter__(self): # asyncio.run is used as it's a battle-tested way to safely set up a new loop and tear # it down. However it does mean it's necessary to wait for the task to run before it's # possible to get said loop and task back. For this, the usual blocking queue is used. oneshot = BlockingQueue(1) self._thread = threading.Thread(target=asyncio.run, args=( self._run(self._coro, self._size, oneshot, self._args, self._kwargs),)) self._thread.start() self._loop, self._task, self._queue_in, self._queue_out = oneshot.get() return self def __exit__(self, exc_type, exc_value, exc_traceback): try: self._loop.call_soon_threadsafe(self._task.cancel) except RuntimeError: if self._loop.is_running(): raise finally: self._thread.join() @staticmethod async def _run(coro, size, oneshot, args, kwargs): # asyncio.Queue's are created here so that they pick up the right loop. queue_in, queue_out = asyncio.Queue(size), asyncio.Queue(size) oneshot.put((asyncio.get_event_loop(), asyncio.current_task(), queue_in, queue_out)) try: # `queue_in` and `queue_out` are intentionally swapped here. await coro(TwoSidedQueue(queue_out, queue_in), *args, **kwargs) except asyncio.CancelledError: pass class Command: def __init__(self, func, data=None): self.func = func self.data = data def parallel(timeout,*pairs): if len(pairs) == 0: return if len(pairs) == 1: pairs = pairs[0] async def async_main(queue): while True: command = await queue.get() await queue.put(command.func(*command.data)) with LaunchAsync(async_main) as queue: for pair in pairs: f = pair.pop(0) queue.put(Command(f, pair)) return iter(queue.get(timeout=timeout)) # functionality def run(cmd): return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout) def xpath_finder(str,pattern): try: return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip() except: return "" def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' content = str(requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ).content) translated = text src_lang = xpath_finder(content,'//*[@class="source-language"]') trgt_lang = xpath_finder(content,'//*[@class="target-language"]') src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*') trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*') if trgt_lang == lang: translated = trgt_text ret = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) def calc(img,p1,p2,motion): global last_motion global pipe if last_motion != motion: if last_motion != "": pipe.unload_lora_weights() if motion != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.fuse_lora() pipe.set_adapters("motion", [0.7]) last_motion = motion pipe.to(device,dtype=dtype) return pipe( prompt=p1, negative_prompt=p2, height=height, width=width, ip_adapter_image=img.convert("RGB"), num_inference_steps=step, guidance_scale=accu, num_frames=(fps*time) ) def handle(*inp): inp = list(inp) inp[1] = translate(inp[1],"english") inp[2] = translate(inp[2],"english") if inp[0] == None: return None if inp[2] != "": inp[2] = f", {inp[2]}" inp[2] = f"(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck{inp[2]}" _do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"] if inp[1] != "": _do.append(f"a new {inp[1]} content in the image") inp[1] = ", ".join(_do) ln = len(result) parargs = [[calc,*inp] for i in range(ln)] out_pipe = parallel(5,parargs) names = [] for i in out_pipe: name = generate_random_string(12)+".png" export_to_gif(i.frames[0],name,fps=fps) names.append( name ) return names def ui(): global result with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE GIF CREATOR """) with gr.Row(): img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil") with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="INCLUDE", container=False, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="EXCLUDE", container=False, max_lines=1 ) with gr.Row(): motion = gr.Dropdown( label='CAMERA', show_label=True, container=True, choices=[ ("(No Effect)", ""), ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), ], value="", interactive=True ) with gr.Row(): run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) gr.on( triggers=[ run_button.click, prompt.submit, prompt2.submit ], fn=handle, inputs=[img,prompt,prompt2,motion], outputs=result ) demo.queue().launch() # entry if __name__ == "__main__": os.chdir(os.path.abspath(os.path.dirname(__file__))) ui() # end