import gradio as gr import os import re #from tempfile import NamedTemporaryFile import numpy as np import spaces import random import string from diffusers import AutoPipelineForText2Image import torch from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor import requests from lxml.html import fromstring pool = ProcessPoolExecutor(4) pool.__enter__() #model_id = "runwayml/stable-diffusion-v1-5" #model_id = "stabilityai/stable-diffusion-3-medium-diffusers" model_id = "kandinsky-community/kandinsky-3" device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) else: pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token')) pipe = pipe.to(device) def translate(text,lang): text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] url = 'https://www.google.com/search' resp = requests.get( url = url, params = {'q': f'{lang} translate {text}'}, headers = { 'User-Agent': random.choice(user_agents) } ) content = resp.content html = fromstring(content) #src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip() translated = text try: trgt = html.xpath('//span[@class="target-language"]')[0].text.strip() rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip() if trgt.lower() == lang.lower(): translated = rslt except: raise Exception("Translation Error!") ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(duration=120) def Piper(_do): return pipe( _do, height=512, width=768, #negative_prompt='ugly, deformed, disfigured, poor details, bad anatomy, labels, texts, logos', num_inference_steps=40, guidance_scale=3.5 ) def infer(prompt): name = generate_random_string(12)+".png" _do = f'Amazing playful { translate(prompt,"english") }, muted colors, dynamic poze, realisticת realistic details, dark white and dark gray, reflections, award winning photo, soft natural lighting, 3d, Blender, Octane render, tilt - shift, deep field, colorful, highly detailed illustrations, 8k'.lower() image = Piper(_do).images[0].save(name) return name css=""" #col-container { margin: 0 auto; max-width: 15cm; } #image-container { aspect-ratio: 3 / 2; } .dropdown-arrow { display: none !important; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38"); } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Image Generator Currently running on {power_device}. """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="Describe the photo", container=False, rtl=True, max_lines=1 ) with gr.Row(): run_button = gr.Button("Run") result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath') prompt.submit( fn = infer, inputs = [prompt], outputs = [result] ) run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()