# built-in from inspect import signature import os import subprocess import logging import re import random from string import ascii_letters, digits, punctuation import requests import sys import warnings import time import asyncio from functools import partial # external import spaces import torch import gradio as gr from numpy import asarray as array from lxml.html import fromstring from diffusers.utils import export_to_video, load_image from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import FluxPipeline, CogVideoXImageToVideoPipeline from PIL import Image, ImageDraw, ImageFont # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.WARN) handler = logging.StreamHandler(sys.stderr) handler.setLevel(logging.WARN) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) # constant data if torch.cuda.is_available(): device = "cuda" else: device = "cpu" base = "black-forest-labs/FLUX.1-schnell" # variable data additional_image = None # precision data seq=512 fps=15 width=768 height=512 image_steps=8 video_steps=50 img_accu=9 vid_accu=7 # ui data css="".join([""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; } .image-container { aspect-ratio: """,str(width),"/",str(height),""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """]) js=""" function custom(){ document.querySelector("div#prompt input").addEventListener("keydown",function(e){ e.target.setAttribute("last_value",e.target.value); }); document.querySelector("div#prompt input").addEventListener("input",function(e){ if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ e.target.value = e.target.getAttribute("last_value"); e.target.removeAttribute("last_value"); } }); document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){ e.target.setAttribute("last_value",e.target.value); }); document.querySelector("div#prompt2 input").addEventListener("input",function(e){ if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ e.target.value = e.target.getAttribute("last_value"); e.target.removeAttribute("last_value"); } }); } """ # torch pipes image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.float32).to(device) video_pipe = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX-5b-I2V", torch_dtype=torch.bfloat16 ).to(device) video_pipe.vae.enable_tiling() video_pipe.vae.enable_slicing() # functionality def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(duration=80) def pipe_generate(img,p1,p2,time,title): global pipe if img is None: img = image_pipe( prompt=p1, negative_prompt=p2, height=height, width=width, guidance_scale=img_accu, num_images_per_prompt=1, num_inference_steps=image_steps, safety_checker=None, max_sequence_length=seq, generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) ).images[0] additional_image = True if title != "": draw = ImageDraw.Draw(img) textheight=min(( width // 10 ), ( height // 5 )) rows = 1 font = ImageFont.truetype(r"Alef-Bold.ttf", textheight) textwidth = draw.textlength(title,font) x = (width - textwidth) // 2 y = (height - (textheight * rows // 2)) // 2 draw.text((x, y), title, (255,255,255), font=font) additional_image = img if additional_image else None if time == 0.0: return img return video_pipe( prompt=p1, safety_checker=None, negative_prompt=p2.replace("textual content, ",""), image=img, num_inference_steps=video_steps, guidance_scale=vid_accu, num_videos_per_prompt=1, num_frames=(fps*time), generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) ).frames[0] def handle_generate(*_inp): additional_image = None inp = list(_inp) #inp[1] = translate(inp[1],"english") #inp[2] = translate(inp[2],"english") if len(inp[2]) >= 2: inp[2] = "," + inp[2].strip(",").strip(" ") inp[2] = f"textual,labeled,divined,distorted,discontinuous,ugly,blurry,low resolution,motionless,static,wrong body anatomy{inp[2]}" if len(inp[1]) >= 2: inp[1] = "," + inp[1].strip(",").strip(" ") inp[1] = f'realistic,natural,genuine,reasonable,highly detailed{inp[1]}' print(f""" Positive: {inp[1]} Negative: {inp[2]} """) pipe_out = pipe_generate(*inp) name = generate_random_string(12) + ( ".png" if inp[3] == 0.0 else ".mp4" ) if inp[3] == 0.0: pipe_out.save(name) else: export_to_video(pipe_out,name,fps=fps) if inp[3] == 0.0: return name, None else: return additional_image, name def ui(): global result with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo: gr.Markdown(f""" # Photo Motion - PNG/MP4 Generator """) with gr.Row(): title = gr.Textbox( placeholder="Logo title", container=False, max_lines=1 ) prompt = gr.Textbox( elem_id="prompt", placeholder="Included keywords", container=False, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="Excluded keywords", container=False, max_lines=1 ) with gr.Row(): time = gr.Slider( minimum=0.0, maximum=3.0, value=0.0, step=1.0, label="Duration (0s = PNG)" ) with gr.Row(elem_id="col-container"): with gr.Column(): img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil") with gr.Column(): res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False) with gr.Column(): res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False) with gr.Row(): run_button = gr.Button("Start!",elem_classes="btn",scale=0) gr.on( triggers=[ run_button.click, prompt.submit, prompt2.submit ], fn=handle_generate, inputs=[img,prompt,prompt2,time,title], outputs=[res_img,res_vid] ) demo.queue().launch() # entry if __name__ == "__main__": os.chdir(os.path.abspath(os.path.dirname(__file__))) ui() # end