File size: 3,631 Bytes
b4f9b4b
 
210ed13
f043c9b
210ed13
b1328e8
62c5b0c
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
9b79250
76b48d0
62c5b0c
 
210ed13
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
3ed5fef
758f177
7206ba2
781571c
7206ba2
48e1ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758f177
 
 
 
 
3ed5fef
b4f9b4b
 
 
 
 
cbed2ab
62c5b0c
b4f9b4b
b9d2cc5
93b8891
 
b4f9b4b
210ed13
 
 
 
099ffc5
b9d2cc5
 
 
210ed13
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
b9d2cc5
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import gradio as gr
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(16)
pool.__enter__()

model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    resp = requests.post(
        url = "https://www.bing.com/ttranslatev3?isVertical=1&&IG=13172331D0494B12ABFA8F4454EEB479&IID=translator.5026",
        data = f"&fromLang=auto-detect&to={lang}&token=cdkbEXg93_iQE28MFPv9ScrPY_fs2OAw&key=1722124106496&text={text}&tryFetchingGenderDebiasedTranslations=true",
        headers = {
            "accept": "*/*",
            "accept-language": "en-US,en;q=0.9,he;q=0.8,ha;q=0.7",
            "content-type": "application/x-www-form-urlencoded",
            "priority": "u=1, i",
            "sec-ch-ua": "\"Not/A)Brand\";v=\"8\", \"Chromium\";v=\"126\", \"Google Chrome\";v=\"126\"",
            "sec-ch-ua-arch": "\"x86\"",
            "sec-ch-ua-bitness": "\"64\"",
            "sec-ch-ua-full-version": "\"126.0.6478.185\"",
            "sec-ch-ua-full-version-list": "\"Not/A)Brand\";v=\"8.0.0.0\", \"Chromium\";v=\"126.0.6478.185\", \"Google Chrome\";v=\"126.0.6478.185\"",
            "sec-ch-ua-mobile": "?0",
            "sec-ch-ua-model": "\"\"",
            "sec-ch-ua-platform": "\"Windows\"",
            "sec-ch-ua-platform-version": "\"10.0.0\"",
            "sec-fetch-dest": "empty",
            "sec-fetch-mode": "cors",
            "sec-fetch-site": "same-origin"
        }
    )
    print(resp)
    jsn = resp.json()
    print(jsn)
    translated = jsn[0]["translations"][0]["text"]
    return translated

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=20)
def infer(prompt):
    name = generate_random_string(12)+".png"
    english_prompt = "Generate the most true and authentic and real and genuine single photograph, for " + translate(prompt,"en")
    print(f'Final prompt: {english_prompt}')
    image = pipe(english_prompt).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 12cm;
}
#image-container {
    aspect-ratio: 1 / 1;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()