File size: 3,533 Bytes
b4f9b4b
a67a3c8
b4f9b4b
210ed13
f043c9b
210ed13
b1328e8
62c5b0c
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
9b79250
76b48d0
62c5b0c
 
210ed13
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
3ed5fef
a597e6b
 
 
 
 
 
 
 
 
c6e402b
 
7206ba2
a597e6b
48e1ac1
758f177
db97e79
c6e402b
cb3a366
b4f9b4b
 
 
 
 
cbed2ab
62c5b0c
b4f9b4b
cb3a366
93b8891
 
b4f9b4b
210ed13
 
 
 
099ffc5
b9d2cc5
 
 
210ed13
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
b9d2cc5
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(16)
pool.__enter__()

model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    resp = requests.get(
        url = f'https://www.google.com/search?q=translate%20to%20{lang}:{text}'
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    print(resp)
    translated = fromstring(resp.content).xpath('//span[@lang')[0].text().strip()
    return re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=20)
def infer(prompt):
    name = generate_random_string(12)+".png"
    english_prompt = f'The "{translate(prompt,"english")}" authentically labels-free genuine accurate:'
    print(f'Final prompt: {english_prompt}')
    image = pipe(english_prompt).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 12cm;
}
#image-container {
    aspect-ratio: 1 / 1;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()