Kokoro-API-3 / app.py
Yaron Koresh
Update app.py
169516c verified
raw
history blame
11.9 kB
# built-in
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial
# external
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_video, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import StableDiffusionPipeline, CogVideoXImageToVideoPipeline
#from diffusers import AnimateDiffPipeline, DDIMScheduler
#from diffusers.models import AutoencoderKL, MotionAdapter
#from diffusers.schedulers import DPMSolverMultistepScheduler
from PIL import Image, ImageDraw, ImageFont
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
else:
device = "cpu"
dtype = torch.float16
#base = "emilianJR/epiCRealism"
base = "SG161222/Realistic_Vision_V5.1_noVAE"
vae_id = "stabilityai/sd-vae-ft-mse"
#motion_adapter = "guoyww/animatediff-motion-adapter-v1-5-3"
# variable data
last_motion=""
# precision data
seq=512
fast=False
fps=30
width=1024
height=1024
step=100
accu=7
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
# torch pipes
image_pipe = StableDiffusionPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device)
#adapter = MotionAdapter.from_pretrained(motion_adapter, torch_dtype=dtype, safety_checker=None).to(device)
vae = AutoencoderKL.from_pretrained(vae_id, torch_dtype=torch.float16).to(device)
image_pipe.vae = vae
scheduler = DDIMScheduler.from_pretrained(
base,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=torch.bfloat16,
safety_checker=None
).to(device)
video_pipe.scheduler = scheduler2
video_pipe.vae.enable_tiling()
video_pipe.vae.enable_slicing()
#pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
video_pipe.enable_model_cpu_offload()
video_pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
# functionality
def run(cmd):
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)
def xpath_finder(str,pattern):
try:
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
except:
return ""
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip()
lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
content = str(requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
).content)
translated = text
src_lang = xpath_finder(content,'//*[@class="source-language"]')
trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
if trgt_lang == lang:
translated = trgt_text
ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip()
return ret
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate(img,p1,p2,motion,time,title):
global last_motion
global pipe
if img is None:
img = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=accu,
num_images_per_prompt=1,
num_inference_steps=step,
max_sequence_length=seq,
need_safetycheck=False,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images[0]
if title != "":
draw = ImageDraw.Draw(pipe_out)
textheight=84
font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight)
textwidth = draw.textlength(title,font)
x = (width - textwidth) // 2
y = (height - textheight) // 2
draw.text((x, y), title,font=font)
if time == 0.0:
return img
if last_motion != motion:
if last_motion != "":
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.fuse_lora()
pipe.set_adapters("motion", [0.7])
last_motion = motion
return video_pipe(
prompt=p1,
negative_prompt=p2,
image=img,
num_inference_steps=step,
guidance_scale=accu,
num_videos_per_prompt=1,
num_frames=(fps*time),
need_safetycheck=False,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).frames[0]
def handle_generate(*_inp):
inp = list(_inp)
inp[1] = translate(inp[1],"english")
inp[2] = translate(inp[2],"english")
if inp[2] != "":
inp[2] = ", related to: " + inp[2] + "."
inp[2] = f"The content which is faked, errored, unreal, off topic, pixelated, deformed, and semi-realistic, cgi, 3d, sketch, cartoon, drawing, anime, cropped, out of frame, low quality, textual, jpeg artifacts, ugly, duplicated, weird, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutations, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck content{inp[2]}"
if inp[1] != "":
inp[1] = ", related to: " + inp[1] + "."
inp[1] = f'The content which is photographed, realistic, true, genuine, dynamic poze, authentic, deep field, reasonable, natural, best quality, focused, highly detailed content{inp[1]}'
print(f"""
Positive: {inp[1]}
Negative: {inp[2]}
""")
pipe_out = pipe_generate(*inp)
name = generate_random_string(12) + ( ".png" if time == 0 else ".mp4" )
if inp[4] == 0.0:
pipe_out.save(name)
else:
export_to_video(pipe_out,name,fps=fps)
return name
def ui():
global result
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
gr.Markdown(f"""
# MULTI-LANGUAGE MP4/PNG CREATOR
""")
with gr.Row(elem_id="col-container"):
with gr.Column():
with gr.Row():
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
with gr.Column(scale=0.66):
with gr.Row():
title = gr.Textbox(
placeholder="Logo title",
container=False,
max_lines=1
)
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Included keywords",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="Excluded keywords",
container=False,
max_lines=1
)
with gr.Row():
time = gr.Slider(
minimum=0.0,
maximum=600.0,
value=0.0,
step=5.0,
label="MP4/PNG Duration (0s = PNG)"
)
with gr.Row():
motion = gr.Dropdown(
label='GIF camera movement',
show_label=True,
container=False,
choices=[
("(No Effect)", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
result = gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
with gr.Row():
run_button = gr.Button("Start!",elem_classes="btn",scale=0)
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle_generate,
inputs=[img,prompt,prompt2,motion,time,title],
outputs=result
)
demo.queue().launch()
# entry
if __name__ == "__main__":
os.chdir(os.path.abspath(os.path.dirname(__file__)))
ui()
# end