Kokoro-API-3 / app.py
Yaron Koresh
Update app.py
c2185df verified
raw
history blame
9.4 kB
# built-in
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
from functools import partial
# external
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_video, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import FluxPipeline, CogVideoXImageToVideoPipeline
from PIL import Image, ImageDraw, ImageFont
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
# constant data
if torch.cuda.is_available():
device = "cuda"
dtype = torch.bfloat16
else:
device = "cpu"
dtype = torch.bfloat16
base = "black-forest-labs/FLUX.1-schnell"
# variable data
additional_image = None
# precision data
seq=512
fps=20
width=1280
height=720
image_steps=8
video_steps=20
accu=4.5
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
# torch pipes
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=dtype, safety_checker=None).to(device)
video_pipe = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
torch_dtype=dtype
).to(device)
video_pipe.vae.enable_tiling()
video_pipe.vae.enable_slicing()
video_pipe.enable_model_cpu_offload()
# functionality
def run(cmd):
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)
def xpath_finder(str,pattern):
try:
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
except:
return ""
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', text)).lower().strip()
lang = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("(^-)|(-$)","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
content = str(requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
).content)
translated = text
src_lang = xpath_finder(content,'//*[@class="source-language"]')
trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
if trgt_lang == lang:
translated = trgt_text
ret = re.sub(f'[{punctuation}]', '', re.sub('[ ]+', ' ', translated)).lower().strip()
return ret
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def pipe_generate(img,p1,p2,time,title):
global last_motion
global pipe
if img is None:
img = image_pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
guidance_scale=accu,
num_images_per_prompt=1,
num_inference_steps=image_steps,
max_sequence_length=seq,
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).images[0]
additional_image = True
if title != "":
draw = ImageDraw.Draw(img)
textheight=84
font = ImageFont.truetype(r"OpenSans-Bold.ttf", textheight)
textwidth = draw.textlength(title,font)
x = (width - textwidth) // 2
y = (height - textheight) // 2
draw.text((x, y), title,font=font)
additional_image = img if additional_image else None
if time == 0.0:
return img
return video_pipe(
prompt=p1,
negative_prompt=p2.replace("textual content, ",""),
image=img,
num_inference_steps=video_steps,
guidance_scale=accu,
num_videos_per_prompt=1,
num_frames=(fps*time),
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
).frames[0]
def handle_generate(*_inp):
additional_image = None
inp = list(_inp)
inp[1] = translate(inp[1],"english")
inp[2] = translate(inp[2],"english")
if inp[2] != "":
inp[2] = ", " + inp[2]
inp[2] = f"textual content, pixelated photo, unrealistic situation, cgi quality, sketch quality, cartoon quality, drawing quality, anime quality, cropping, out of frame, worst quality, low quality, rendering artifacts, duplicated elements, weird body look, mutation, blurry photo, bad body anatomy, unproportional body parts, cloned face, disfigured body, malformed photo, missing body parts, extra body parts, fused body parts{inp[2]}"
if inp[1] != "":
inp[1] = ", " + inp[1]
inp[1] = f'true reality, natural colors, realistic, beautiful pretty look, genuine and authentic reality, logical reasonable photo content, natural look, masterpiece photo, highly detailed photo{inp[1]}'
print(f"""
Positive: {inp[1]}
Negative: {inp[2]}
""")
pipe_out = pipe_generate(*inp)
name = generate_random_string(12) + ( ".png" if inp[3] == 0.0 else ".mp4" )
if inp[3] == 0.0:
pipe_out.save(name)
else:
export_to_video(pipe_out,name,fps=fps)
if inp[3] == 0.0:
return name, None
else:
return additional_image, name
def ui():
global result
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo:
gr.Markdown(f"""
# MULTI-LANGUAGE MP4/PNG CREATOR
""")
with gr.Row():
title = gr.Textbox(
placeholder="Logo title",
container=False,
max_lines=1
)
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Included keywords",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="Excluded keywords",
container=False,
max_lines=1
)
with gr.Row():
time = gr.Slider(
minimum=0.0,
maximum=600.0,
value=0.0,
step=5.0,
label="Duration (0s = PNG)"
)
with gr.Row(elem_id="col-container"):
with gr.Column():
img = gr.Image(label="Upload photo",show_label=True,container=False,type="pil")
with gr.Column():
res_img = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
with gr.Column():
res_vid = gr.Video(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, show_share_button=False)
with gr.Row():
run_button = gr.Button("Start!",elem_classes="btn",scale=0)
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle_generate,
inputs=[img,prompt,prompt2,time,title],
outputs=[res_img,res_vid]
)
demo.queue().launch()
# entry
if __name__ == "__main__":
os.chdir(os.path.abspath(os.path.dirname(__file__)))
ui()
# end