Spaces:
Running
Running
import os | |
import subprocess | |
import logging | |
import re | |
import random | |
import string | |
import requests | |
import sys | |
import warnings | |
import spaces | |
import torch | |
import gradio as gr | |
import numpy as np | |
from lxml.html import fromstring | |
#from transformers import pipeline | |
from torch import multiprocessing as mp, nn | |
#from torch.multiprocessing import Pool | |
#from pathos.multiprocessing import ProcessPool as Pool | |
#from pathos.threading import ThreadPool as Pool | |
#from diffusers.pipelines.flux import FluxPipeline | |
from diffusers.utils import export_to_gif, load_image | |
from diffusers.models.modeling_utils import ModelMixin | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file, save_file | |
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel | |
#import jax | |
#import jax.numpy as jnp | |
from numba import jit,njit | |
warnings.filterwarnings("ignore") | |
root = logging.getLogger() | |
root.setLevel(logging.DEBUG) | |
handler = logging.StreamHandler(sys.stdout) | |
handler.setLevel(logging.DEBUG) | |
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') | |
handler.setFormatter(formatter) | |
root.addHandler(handler) | |
handler2 = logging.StreamHandler(sys.stderr) | |
handler2.setLevel(logging.DEBUG) | |
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') | |
handler2.setFormatter(formatter) | |
root.addHandler(handler2) | |
last_motion=None | |
dtype = torch.float16 | |
result=[] | |
device = "cuda" | |
#repo = "ByteDance/AnimateDiff-Lightning" | |
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
base = "emilianJR/epiCRealism" | |
#base = "SG161222/Realistic_Vision_V6.0_B1_noVAE" | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype) | |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False) | |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device) | |
fast=True | |
fps=10 | |
time=1 | |
width=384 | |
height=768 | |
step=40 | |
accu=10 | |
css=""" | |
input, input::placeholder { | |
text-align: center !important; | |
} | |
*, *::placeholder { | |
font-family: Suez One !important; | |
} | |
h1,h2,h3,h4,h5,h6 { | |
width: 100%; | |
text-align: center; | |
} | |
footer { | |
display: none !important; | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 15cm; | |
} | |
.image-container { | |
aspect-ratio: """+str(width)+"/"+str(height)+""" !important; | |
} | |
.dropdown-arrow { | |
display: none !important; | |
} | |
*:has(>.btn) { | |
display: flex; | |
justify-content: space-evenly; | |
align-items: center; | |
} | |
.btn { | |
display: flex; | |
} | |
""" | |
js=""" | |
function custom(){ | |
document.querySelector("div#prompt input").setAttribute("maxlength","38") | |
document.querySelector("div#prompt2 input").setAttribute("maxlength","38") | |
} | |
""" | |
def run(cmd, assert_success=False, capture_output=False, env=None, dry_run=False): | |
if dry_run: | |
print(f"--> {cmd}") | |
result = 1 | |
else: | |
result = subprocess.run(cmd, shell=True, capture_output=capture_output, env=env) | |
if assert_success and result.returncode != 0: | |
logging.error( | |
f"Command '{cmd}' failed with exit status code '{result.returncode}'. Exiting..." | |
) | |
sys.exit() | |
return result | |
def translate(text,lang): | |
if text == None or lang == None: | |
return "" | |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() | |
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() | |
if text == "" or lang == "": | |
return "" | |
if len(text) > 38: | |
raise Exception("Translation Error: Too long text!") | |
user_agents = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
] | |
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() | |
query_text = f'Please translate {padded_chars}, into {lang}' | |
url = f'https://www.google.com/search?q={query_text}' | |
resp = requests.get( | |
url = url, | |
headers = { | |
'User-Agent': random.choice(user_agents) | |
} | |
) | |
content = resp.content | |
html = fromstring(content) | |
translated = text | |
try: | |
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() | |
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() | |
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() | |
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() | |
if trgt_lang == lang: | |
translated = trgt_text | |
except: | |
print(f'Translation Warning: Failed To Translate!') | |
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() | |
print(ret) | |
return ret | |
def generate_random_string(length): | |
characters = string.ascii_letters + string.digits | |
return ''.join(random.choice(characters) for _ in range(length)) | |
#@spaces.GPU(duration=65) | |
def Piper(image,positive,negative,motion): | |
global last_motion | |
global ip_loaded | |
if last_motion != motion: | |
pipe.unload_lora_weights() | |
if motion != "": | |
pipe.load_lora_weights(motion, adapter_name="motion") | |
pipe.fuse_lora() | |
pipe.set_adapters(["motion"], [0.7]) | |
last_motion = motion | |
pipe.to(device,dtype) | |
if negative=="": | |
return pipe( | |
prompt=positive, | |
height=height, | |
width=width, | |
ip_adapter_image=image.convert("RGB").resize((width,height)), | |
num_inference_steps=step, | |
guidance_scale=accu, | |
num_frames=(fps*time) | |
) | |
return pipe( | |
prompt=positive, | |
negative_prompt=negative, | |
height=height, | |
width=width, | |
ip_adapter_image=image.convert("RGB").resize((width,height)), | |
num_inference_steps=step, | |
guidance_scale=accu, | |
num_frames=(fps*time) | |
) | |
def infer(pm): | |
print("infer: started") | |
p1 = pm["p"] | |
name = generate_random_string(12)+".png" | |
neg = pm["n"] | |
if neg != "": | |
neg = f"{neg} where in the image" | |
_do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"] | |
if p1 != "": | |
_do.append(f"a new {p1} content in the image") | |
posi = ", ".join(_do) | |
if pm["i"] == None: | |
return None | |
out = Piper(pm["i"],posi,neg,pm["m"]) | |
export_to_gif(out.frames[0],name,fps=fps) | |
return name | |
def handle(i,m,p1,p2,*result): | |
p1_en = translate(p1,"english") | |
p2_en = translate(p2,"english") | |
pm = {"p":p1_en,"n":p2_en,"m":m,"i":i} | |
ln = len(result) | |
rng = list(range(ln)) | |
arr = [pm for _ in rng] | |
#with Pool(f'{ ln }:ppn=2', queue='productionQ', timelimit='5:00:00', workdir='.') as pool: | |
#return pool.map(infer,arr) | |
ret = [] | |
for _ in range(ln): | |
ret.append(infer,pm) | |
return ret | |
def ui(): | |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# MULTI-LANGUAGE IMAGE GENERATOR | |
""") | |
with gr.Row(): | |
img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
elem_id="prompt", | |
placeholder="INCLUDE", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
prompt2 = gr.Textbox( | |
elem_id="prompt2", | |
placeholder="EXCLUDE", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
motion = gr.Dropdown( | |
label='CAMERA', | |
show_label=True, | |
container=True, | |
choices=[ | |
("(No Effect)", ""), | |
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
], | |
value="", | |
interactive=True | |
) | |
with gr.Row(): | |
run_button = gr.Button("START",elem_classes="btn",scale=0) | |
with gr.Row(): | |
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, prompt2.submit], | |
fn=handle,inputs=[img,motion,prompt,prompt2,*result],outputs=result | |
) | |
demo.queue().launch() | |
def pre(): | |
global pipe | |
pipe = AnimateDiffPipeline.from_pretrained(base, vae=vae, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
pipe.scheduler = DDIMScheduler( | |
clip_sample=False, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
timestep_spacing="trailing", | |
steps_offset=1 | |
) | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") | |
pipe.enable_vae_slicing() | |
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast) | |
mp.set_start_method("spawn", force=True) | |
pre() | |
ui() |