Spaces:
Running
Running
# built-in | |
from inspect import signature | |
import os | |
import subprocess | |
import logging | |
import re | |
import random | |
from string import ascii_letters, digits, punctuation | |
import requests | |
import sys | |
import warnings | |
import time | |
import asyncio | |
from functools import partial | |
# external | |
import spaces | |
import torch | |
import gradio as gr | |
from numpy import asarray as array | |
from lxml.html import fromstring | |
from diffusers.utils import export_to_video, load_image | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file, save_file | |
from diffusers import FluxPipeline, CogVideoXImageToVideoPipeline | |
from PIL import Image, ImageDraw, ImageFont | |
# logging | |
warnings.filterwarnings("ignore") | |
root = logging.getLogger() | |
root.setLevel(logging.WARN) | |
handler = logging.StreamHandler(sys.stderr) | |
handler.setLevel(logging.WARN) | |
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') | |
handler.setFormatter(formatter) | |
root.addHandler(handler) | |
# constant data | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
device = "cpu" | |
base = "black-forest-labs/FLUX.1-schnell" | |
# variable data | |
# precision data | |
seq=512 | |
width=4320 | |
height=4320 | |
image_steps=8 | |
img_accu=0 | |
# ui data | |
css="".join([""" | |
input, input::placeholder { | |
text-align: center !important; | |
} | |
*, *::placeholder { | |
font-family: Suez One !important; | |
} | |
h1,h2,h3,h4,h5,h6 { | |
width: 100%; | |
text-align: center; | |
} | |
footer { | |
display: none !important; | |
} | |
#col-container { | |
margin: 0 auto; | |
} | |
.image-container { | |
aspect-ratio: """,str(width),"/",str(height),""" !important; | |
} | |
.dropdown-arrow { | |
display: none !important; | |
} | |
*:has(>.btn) { | |
display: flex; | |
justify-content: space-evenly; | |
align-items: center; | |
} | |
.btn { | |
display: flex; | |
} | |
"""]) | |
js=""" | |
function custom(){ | |
document.querySelector("div#prompt input").addEventListener("keydown",function(e){ | |
e.target.setAttribute("last_value",e.target.value); | |
}); | |
document.querySelector("div#prompt input").addEventListener("input",function(e){ | |
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ | |
e.target.value = e.target.getAttribute("last_value"); | |
e.target.removeAttribute("last_value"); | |
} | |
}); | |
document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){ | |
e.target.setAttribute("last_value",e.target.value); | |
}); | |
document.querySelector("div#prompt2 input").addEventListener("input",function(e){ | |
if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ | |
e.target.value = e.target.getAttribute("last_value"); | |
e.target.removeAttribute("last_value"); | |
} | |
}); | |
} | |
""" | |
# torch pipes | |
image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device) | |
image_pipe.enable_model_cpu_offload() | |
# functionality | |
def generate_random_string(length): | |
characters = str(ascii_letters + digits) | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def pipe_generate(p1,p2): | |
return image_pipe( | |
prompt=p1, | |
negative_prompt=p2, | |
height=height, | |
width=width, | |
guidance_scale=img_accu, | |
num_images_per_prompt=1, | |
num_inference_steps=image_steps, | |
max_sequence_length=seq, | |
generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) | |
).images[0] | |
def handle_generate(artist,song,genre,lyrics): | |
pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip() | |
pos_song = re.sub("([ \t\n]){1,}", " ", song).strip() | |
pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split()) | |
pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip() | |
pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip() | |
neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry" | |
pos = f'Realistic Natural Genuine Reasonable Detailed { pos_genre } GENRE SONG COVER FOR { pos_song }: "{ pos_lyrics }"' | |
print(f""" | |
Positive: {inp[1]} | |
Negative: {inp[2]} | |
""") | |
img = pipe_generate(pos,neg) | |
draw = ImageDraw.Draw(img) | |
rows = 1 | |
labes_distance = 1 // 3 | |
textheight=min(( width // 10 ), ( height // 5 )) | |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight) | |
textwidth = draw.textlength(pos_song,font) | |
x = (width - textwidth) // 2 | |
y = (height - (textheight * rows // 2)) // 2 | |
y = y - (y // labes_distance) | |
draw.text((x, y), pos_song, (255,255,255), font=font) | |
textheight=min(( width // 12 ), ( height // 6 )) | |
font = ImageFont.truetype(r"Alef-Bold.ttf", textheight) | |
textwidth = draw.textlength(pos_artist,font) | |
x = (width - textwidth) // 2 | |
y = (height - (textheight * rows // 2)) // 2 | |
y = y + (y // labes_distance) | |
draw.text((x, y), pos_artist, (255,255,255), font=font) | |
name = generate_random_string(12) + ".png" | |
img.save(name) | |
return name | |
def ui(): | |
with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo: | |
gr.Markdown(f""" | |
# Song Cover Image Generator | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
artist = gr.Textbox( | |
placeholder="Artist name", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Column(): | |
song = gr.Textbox( | |
placeholder="Song name", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Column(): | |
genre = gr.Textbox( | |
placeholder="Genre", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
lyrics = gr.Textbox( | |
placeholder="Lyrics (English)", | |
container=False, | |
max_lines=1 | |
) | |
with gr.Row(): | |
cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False) | |
with gr.Row(): | |
run = gr.Button("Generate",elem_classes="btn") | |
gr.on( | |
triggers=[ | |
run.click | |
], | |
fn=handle_generate, | |
inputs=[artist,song,genre,lyrics], | |
outputs=[cover] | |
) | |
demo.queue().launch() | |
# entry | |
if __name__ == "__main__": | |
ui() | |
# end | |