Yaron Koresh commited on
Commit
59eda4a
·
verified ·
1 Parent(s): 6f91d0a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -13
app.py CHANGED
@@ -148,18 +148,22 @@ def infer(pm):
148
 
149
  p1 = pm["p"]
150
  name = generate_random_string(12)+".png"
 
151
 
 
 
152
  _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
153
  if p1 != "":
154
  _do.append(f'{p1}')
155
- posi = " ".join(_do)
156
 
157
  return Piper(name,posi,pm["m"])
158
 
159
- def run(m,p1,*result):
160
 
161
  p1_en = translate(p1,"english")
162
- pm = {"p":p1_en,"m":m}
 
163
  ln = len(result)
164
  print("images: "+str(ln))
165
  rng = list(range(ln))
@@ -189,27 +193,29 @@ def main():
189
  fps=40
190
  time=5
191
  device = "cuda"
192
- dtype = torch.float16
193
  result=[]
194
  step = 2
195
 
196
  progress=gr.Progress()
197
  progress((0, step))
198
 
199
- base = "emilianJR/epiCRealism"
200
- repo = "ByteDance/SDXL-Lightning"
201
- ckpt = f"sdxl_lightning_{step}step_unet.safetensors"
 
202
 
203
- unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device, dtype)
204
- unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
205
 
 
206
  repo = "ByteDance/AnimateDiff-Lightning"
207
  ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
208
 
209
  adapter = MotionAdapter().to(device, dtype)
210
  adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device), strict=False)
211
 
212
- pipe = AnimateDiffPipeline.from_pretrained(base, unet=unet, motion_adapter=adapter, torch_dtype=dtype, variant="fp16").to(dtype=dtype)
213
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
214
 
215
  mp.set_start_method("spawn", force=True)
@@ -222,7 +228,14 @@ def main():
222
  with gr.Row():
223
  prompt = gr.Textbox(
224
  elem_id="prompt",
225
- placeholder="DESCRIPTION",
 
 
 
 
 
 
 
226
  container=False,
227
  max_lines=1
228
  )
@@ -250,8 +263,8 @@ def main():
250
  result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
251
 
252
  gr.on(
253
- triggers=[run_button.click, prompt.submit],
254
- fn=run,inputs=[motion,prompt,*result],outputs=result
255
  )
256
  demo.queue().launch()
257
 
 
148
 
149
  p1 = pm["p"]
150
  name = generate_random_string(12)+".png"
151
+ neg = pm["n"]
152
 
153
+ if neg != "":
154
+ neg=,f' (((({neg}))))'
155
  _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused']
156
  if p1 != "":
157
  _do.append(f'{p1}')
158
+ posi = " ".join(_do)+neg
159
 
160
  return Piper(name,posi,pm["m"])
161
 
162
+ def run(m,p1,p2,*result):
163
 
164
  p1_en = translate(p1,"english")
165
+ p2_en = translate(p2,"english")
166
+ pm = {"p":p1_en,"n":p2_en,"m":m}
167
  ln = len(result)
168
  print("images: "+str(ln))
169
  rng = list(range(ln))
 
193
  fps=40
194
  time=5
195
  device = "cuda"
196
+ dtype = torch.bfloat16
197
  result=[]
198
  step = 2
199
 
200
  progress=gr.Progress()
201
  progress((0, step))
202
 
203
+ #base="SG161222/Realistic_Vision_V6.0_B1_noVAE"
204
+ #vae="stabilityai/sd-vae-ft-mse-original"
205
+ #repo = "ByteDance/SDXL-Lightning"
206
+ #ckpt = f"sdxl_lightning_{step}step_unet.safetensors"
207
 
208
+ #unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(device)
209
+ #unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
210
 
211
+ base = "emilianJR/epiCRealism"
212
  repo = "ByteDance/AnimateDiff-Lightning"
213
  ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
214
 
215
  adapter = MotionAdapter().to(device, dtype)
216
  adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device), strict=False)
217
 
218
+ pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype, variant="fp16").to(dtype=dtype)
219
  pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
220
 
221
  mp.set_start_method("spawn", force=True)
 
228
  with gr.Row():
229
  prompt = gr.Textbox(
230
  elem_id="prompt",
231
+ placeholder="INCLUDE",
232
+ container=False,
233
+ max_lines=1
234
+ )
235
+ with gr.Row():
236
+ prompt2 = gr.Textbox(
237
+ elem_id="prompt",
238
+ placeholder="EXCLUDE",
239
  container=False,
240
  max_lines=1
241
  )
 
263
  result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
264
 
265
  gr.on(
266
+ triggers=[run_button.click, prompt.submit, prompt2.submit],
267
+ fn=run,inputs=[motion,prompt,prompt2,*result],outputs=result
268
  )
269
  demo.queue().launch()
270