Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,7 @@ import warnings
|
|
16 |
#import spaces
|
17 |
import torch
|
18 |
import gradio as gr
|
19 |
-
from numpy import array
|
20 |
from lxml.html import fromstring
|
21 |
#from transformers import pipeline
|
22 |
#from diffusers.pipelines.flux import FluxPipeline
|
@@ -30,6 +30,9 @@ from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, Eul
|
|
30 |
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
|
31 |
from numba.cuda import jit as gpu, grid
|
32 |
from numba.types import unicode_type as string
|
|
|
|
|
|
|
33 |
# logging
|
34 |
|
35 |
warnings.filterwarnings("ignore")
|
@@ -46,11 +49,13 @@ formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(me
|
|
46 |
handler2.setFormatter(formatter)
|
47 |
root.addHandler(handler2)
|
48 |
|
49 |
-
# data
|
50 |
|
51 |
-
|
52 |
-
inp=[]
|
53 |
last_motion=array([""])
|
|
|
|
|
|
|
54 |
dtype = torch.float16
|
55 |
device = "cuda"
|
56 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
@@ -61,6 +66,8 @@ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtyp
|
|
61 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
62 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
|
63 |
|
|
|
|
|
64 |
fast=True
|
65 |
fps=10
|
66 |
time=1
|
@@ -69,6 +76,8 @@ height=768
|
|
69 |
step=40
|
70 |
accu=10
|
71 |
|
|
|
|
|
72 |
css="""
|
73 |
input, input::placeholder {
|
74 |
text-align: center !important;
|
@@ -162,53 +171,46 @@ def generate_random_string(length):
|
|
162 |
return ''.join(random.choice(characters) for _ in range(length))
|
163 |
|
164 |
@gpu(void())
|
165 |
-
def calc():
|
166 |
-
global
|
167 |
-
global out
|
168 |
global last_motion
|
169 |
|
170 |
x = grid(1)
|
171 |
|
172 |
-
if last_motion[0] !=
|
173 |
pipe.unload_lora_weights()
|
174 |
if inp[3] != "":
|
175 |
-
pipe.load_lora_weights(
|
176 |
pipe.fuse_lora()
|
177 |
-
pipe.set_adapters(
|
178 |
-
last_motion[0] =
|
179 |
|
180 |
pipe.to(device,dtype)
|
181 |
|
182 |
-
if
|
183 |
-
|
184 |
-
prompt=
|
185 |
height=height,
|
186 |
width=width,
|
187 |
-
ip_adapter_image=
|
188 |
num_inference_steps=step,
|
189 |
guidance_scale=accu,
|
190 |
num_frames=(fps*time)
|
191 |
)
|
192 |
|
193 |
-
|
194 |
-
prompt=
|
195 |
-
negative_prompt=
|
196 |
height=height,
|
197 |
width=width,
|
198 |
-
ip_adapter_image=
|
199 |
num_inference_steps=step,
|
200 |
guidance_scale=accu,
|
201 |
num_frames=(fps*time)
|
202 |
)
|
203 |
|
204 |
-
def handle(*
|
205 |
-
|
206 |
-
global out
|
207 |
-
|
208 |
-
inp = args
|
209 |
-
|
210 |
-
out = array([],dtype=string)
|
211 |
-
|
212 |
inp[1] = translate(inp[1],"english")
|
213 |
inp[2] = translate(inp[2],"english")
|
214 |
|
@@ -225,20 +227,24 @@ def handle(*args):
|
|
225 |
|
226 |
ln = len(result)
|
227 |
|
228 |
-
|
|
|
|
|
|
|
|
|
229 |
|
230 |
for i in range(ln):
|
231 |
-
name = generate_random_string
|
232 |
-
export_to_gif(
|
233 |
-
|
234 |
|
235 |
-
return
|
236 |
|
237 |
def ui():
|
238 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
239 |
with gr.Column(elem_id="col-container"):
|
240 |
gr.Markdown(f"""
|
241 |
-
# MULTI-LANGUAGE
|
242 |
""")
|
243 |
with gr.Row():
|
244 |
global img
|
|
|
16 |
#import spaces
|
17 |
import torch
|
18 |
import gradio as gr
|
19 |
+
from numpy import asarray as array
|
20 |
from lxml.html import fromstring
|
21 |
#from transformers import pipeline
|
22 |
#from diffusers.pipelines.flux import FluxPipeline
|
|
|
30 |
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
|
31 |
from numba.cuda import jit as gpu, grid
|
32 |
from numba.types import unicode_type as string
|
33 |
+
from PIL.Image import fromarray as array2image
|
34 |
+
import numpy as np
|
35 |
+
|
36 |
# logging
|
37 |
|
38 |
warnings.filterwarnings("ignore")
|
|
|
49 |
handler2.setFormatter(formatter)
|
50 |
root.addHandler(handler2)
|
51 |
|
52 |
+
# output data
|
53 |
|
54 |
+
out_pipe=array([""])
|
|
|
55 |
last_motion=array([""])
|
56 |
+
|
57 |
+
# constant data
|
58 |
+
|
59 |
dtype = torch.float16
|
60 |
device = "cuda"
|
61 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
|
|
66 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
67 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
|
68 |
|
69 |
+
# precision data
|
70 |
+
|
71 |
fast=True
|
72 |
fps=10
|
73 |
time=1
|
|
|
76 |
step=40
|
77 |
accu=10
|
78 |
|
79 |
+
# ui data
|
80 |
+
|
81 |
css="""
|
82 |
input, input::placeholder {
|
83 |
text-align: center !important;
|
|
|
171 |
return ''.join(random.choice(characters) for _ in range(length))
|
172 |
|
173 |
@gpu(void())
|
174 |
+
def calc(img,p1,p2,motion):
|
175 |
+
global out_pipe
|
|
|
176 |
global last_motion
|
177 |
|
178 |
x = grid(1)
|
179 |
|
180 |
+
if last_motion[0] != motion:
|
181 |
pipe.unload_lora_weights()
|
182 |
if inp[3] != "":
|
183 |
+
pipe.load_lora_weights(motion, adapter_name="motion")
|
184 |
pipe.fuse_lora()
|
185 |
+
pipe.set_adapters("motion", [0.7])
|
186 |
+
last_motion[0] = motion
|
187 |
|
188 |
pipe.to(device,dtype)
|
189 |
|
190 |
+
if p2=="":
|
191 |
+
out_pipe[x] = pipe(
|
192 |
+
prompt=p1,
|
193 |
height=height,
|
194 |
width=width,
|
195 |
+
ip_adapter_image=array2image(img).convert("RGB").resize((width,height)),
|
196 |
num_inference_steps=step,
|
197 |
guidance_scale=accu,
|
198 |
num_frames=(fps*time)
|
199 |
)
|
200 |
|
201 |
+
out_pipe[x] = pipe(
|
202 |
+
prompt=p1,
|
203 |
+
negative_prompt=p2,
|
204 |
height=height,
|
205 |
width=width,
|
206 |
+
ip_adapter_image=array2image(img).convert("RGB").resize((width,height)),
|
207 |
num_inference_steps=step,
|
208 |
guidance_scale=accu,
|
209 |
num_frames=(fps*time)
|
210 |
)
|
211 |
|
212 |
+
def handle(*inp):
|
213 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
inp[1] = translate(inp[1],"english")
|
215 |
inp[2] = translate(inp[2],"english")
|
216 |
|
|
|
227 |
|
228 |
ln = len(result)
|
229 |
|
230 |
+
inp[0] = array(inp[0])
|
231 |
+
inp[1] = array(inp[1])
|
232 |
+
inp[2] = array(inp[2])
|
233 |
+
inp[3] = array(inp[3])
|
234 |
+
calc[ln,32](*inp)
|
235 |
|
236 |
for i in range(ln):
|
237 |
+
name = generate_random_string(12)+".png"
|
238 |
+
export_to_gif(out_pipe[i].frames[0],name,fps=fps)
|
239 |
+
out_pipe[i] = name
|
240 |
|
241 |
+
return out_pipe
|
242 |
|
243 |
def ui():
|
244 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
245 |
with gr.Column(elem_id="col-container"):
|
246 |
gr.Markdown(f"""
|
247 |
+
# MULTI-LANGUAGE GIF CREATOR
|
248 |
""")
|
249 |
with gr.Row():
|
250 |
global img
|