Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""
|
2 |
Modified parts included from these sources:
|
3 |
- https://github.com/nidhaloff/deep-translator
|
|
|
4 |
"""
|
5 |
|
6 |
import urllib
|
@@ -9,7 +10,7 @@ from bs4 import BeautifulSoup
|
|
9 |
from abc import ABC, abstractmethod
|
10 |
from pathlib import Path
|
11 |
from langdetect import detect as get_language
|
12 |
-
from typing import List, Optional, Union
|
13 |
from collections import namedtuple
|
14 |
from inspect import signature
|
15 |
import os
|
@@ -38,9 +39,9 @@ import gradio as gr
|
|
38 |
from lxml.html import fromstring
|
39 |
from huggingface_hub import hf_hub_download
|
40 |
from safetensors.torch import load_file, save_file
|
41 |
-
from diffusers import DiffusionPipeline, AutoencoderTiny
|
42 |
from PIL import Image, ImageDraw, ImageFont
|
43 |
-
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
44 |
from refiners.fluxion.utils import manual_seed
|
45 |
from refiners.foundationals.latent_diffusion import Solver, solvers
|
46 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
@@ -51,8 +52,169 @@ from datetime import datetime
|
|
51 |
|
52 |
working = False
|
53 |
|
54 |
-
model = T5ForConditionalGeneration.from_pretrained("t5-
|
55 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def log(msg):
|
58 |
print(f'{datetime.now().time()} {msg}')
|
@@ -446,8 +608,8 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
446 |
# precision data
|
447 |
|
448 |
seq=512
|
449 |
-
image_steps=
|
450 |
-
img_accu=
|
451 |
|
452 |
# ui data
|
453 |
|
@@ -508,10 +670,13 @@ function custom(){
|
|
508 |
# torch pipes
|
509 |
|
510 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
|
|
511 |
image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype, vae=taef1).to(device)
|
512 |
image_pipe.enable_model_cpu_offload()
|
513 |
-
|
514 |
-
|
|
|
|
|
515 |
|
516 |
# functionality
|
517 |
|
@@ -519,7 +684,7 @@ def upscaler(
|
|
519 |
input_image: Image.Image,
|
520 |
prompt: str = "Hyper realistic photography, Natural visual content.",
|
521 |
negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
|
522 |
-
seed: int =
|
523 |
upscale_factor: int = 2,
|
524 |
controlnet_scale: float = 0.6,
|
525 |
controlnet_decay: float = 1.0,
|
@@ -527,7 +692,7 @@ def upscaler(
|
|
527 |
tile_width: int = 112,
|
528 |
tile_height: int = 144,
|
529 |
denoise_strength: float = 0.35,
|
530 |
-
num_inference_steps: int =
|
531 |
solver: str = "DDIM",
|
532 |
) -> Image.Image:
|
533 |
|
@@ -571,8 +736,8 @@ def _summarize(text):
|
|
571 |
toks = tokenizer.encode( prefix + text, return_tensors="pt", truncation=False)
|
572 |
gen = model.generate(
|
573 |
toks,
|
574 |
-
length_penalty=0.
|
575 |
-
num_beams=
|
576 |
early_stopping=True,
|
577 |
max_length=512
|
578 |
)
|
@@ -580,20 +745,11 @@ def _summarize(text):
|
|
580 |
log(f'RET _summarize with ret as {ret}')
|
581 |
return ret
|
582 |
|
583 |
-
def summarize(text,
|
584 |
log(f'CALL summarize')
|
585 |
|
586 |
words = text.split()
|
587 |
-
|
588 |
-
if len(words) < 5:
|
589 |
-
print("Summarization Error: Text is too short, 5 words minimum.")
|
590 |
-
return text
|
591 |
-
|
592 |
-
if max_words < 5 or max_words > 500:
|
593 |
-
print("Summarization Error: max_words value must be between 5 and 500 words.")
|
594 |
-
return text
|
595 |
-
|
596 |
-
words_length = len(text.split())
|
597 |
|
598 |
if words_length >= 510:
|
599 |
while words_length >= 510:
|
@@ -606,12 +762,11 @@ def summarize(text, max_words=10):
|
|
606 |
text = summ
|
607 |
words_length = len(text.split())
|
608 |
|
609 |
-
while
|
610 |
summ = _summarize(text)
|
611 |
if summ == text:
|
612 |
return text
|
613 |
text = summ
|
614 |
-
words_length = len(text.split())
|
615 |
|
616 |
log(f'RET summarize with text as {text}')
|
617 |
return text
|
@@ -621,8 +776,7 @@ def generate_random_string(length):
|
|
621 |
return ''.join(random.choice(characters) for _ in range(length))
|
622 |
|
623 |
def pipe_generate_image(p1,p2,h,w):
|
624 |
-
|
625 |
-
imgs = image_pipe(
|
626 |
prompt=p1,
|
627 |
negative_prompt=p2,
|
628 |
height=h,
|
@@ -632,9 +786,8 @@ def pipe_generate_image(p1,p2,h,w):
|
|
632 |
num_inference_steps=image_steps,
|
633 |
max_sequence_length=seq,
|
634 |
generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
|
635 |
-
)
|
636 |
-
|
637 |
-
return imgs
|
638 |
|
639 |
def add_song_cover_text(img,artist,song,h,w):
|
640 |
|
@@ -1273,6 +1426,9 @@ class GoogleTranslator(BaseTranslator):
|
|
1273 |
|
1274 |
def translate(txt,to_lang="en",from_lang="auto"):
|
1275 |
log(f'CALL translate')
|
|
|
|
|
|
|
1276 |
translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
|
1277 |
translation = ""
|
1278 |
if len(txt) > 1000:
|
@@ -1323,7 +1479,7 @@ def handle_generation(artist,song,lyrics,h,w):
|
|
1323 |
pos_lyrics = pos_lyrics if pos_lyrics == "" else summarize(translate(pos_lyrics))
|
1324 |
pos_lyrics = re.sub(r"([ \t]){1,}", " ", pos_lyrics).lower().strip()
|
1325 |
|
1326 |
-
neg = f"
|
1327 |
q = "\""
|
1328 |
pos = f'HQ Hyper-realistic professional photograph{ pos_lyrics if pos_lyrics == "" else ": " + q + pos_lyrics + q }.'
|
1329 |
|
@@ -1336,7 +1492,7 @@ def handle_generation(artist,song,lyrics,h,w):
|
|
1336 |
img = all_pipes(pos,neg,h,w)
|
1337 |
|
1338 |
labeled_img = add_song_cover_text(img,pos_artist,pos_song,h,w)
|
1339 |
-
name = f'{generate_random_string(
|
1340 |
labeled_img.save(name)
|
1341 |
|
1342 |
working = False
|
|
|
1 |
"""
|
2 |
Modified parts included from these sources:
|
3 |
- https://github.com/nidhaloff/deep-translator
|
4 |
+
- https://huggingface.co/spaces/ostris/Flex.1-alpha
|
5 |
"""
|
6 |
|
7 |
import urllib
|
|
|
10 |
from abc import ABC, abstractmethod
|
11 |
from pathlib import Path
|
12 |
from langdetect import detect as get_language
|
13 |
+
from typing import Any, Dict, List, Optional, Union
|
14 |
from collections import namedtuple
|
15 |
from inspect import signature
|
16 |
import os
|
|
|
39 |
from lxml.html import fromstring
|
40 |
from huggingface_hub import hf_hub_download
|
41 |
from safetensors.torch import load_file, save_file
|
42 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, FluxPipeline, FlowMatchEulerDiscreteScheduler
|
43 |
from PIL import Image, ImageDraw, ImageFont
|
44 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
|
45 |
from refiners.fluxion.utils import manual_seed
|
46 |
from refiners.foundationals.latent_diffusion import Solver, solvers
|
47 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
|
|
52 |
|
53 |
working = False
|
54 |
|
55 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
56 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
57 |
+
|
58 |
+
def calculate_shift(
|
59 |
+
image_seq_len,
|
60 |
+
base_seq_len: int = 256,
|
61 |
+
max_seq_len: int = 4096,
|
62 |
+
base_shift: float = 0.5,
|
63 |
+
max_shift: float = 1.16,
|
64 |
+
):
|
65 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
66 |
+
b = base_shift - m * base_seq_len
|
67 |
+
mu = image_seq_len * m + b
|
68 |
+
return mu
|
69 |
+
|
70 |
+
def retrieve_timesteps(
|
71 |
+
scheduler,
|
72 |
+
num_inference_steps: Optional[int] = None,
|
73 |
+
device: Optional[Union[str, torch.device]] = None,
|
74 |
+
timesteps: Optional[List[int]] = None,
|
75 |
+
sigmas: Optional[List[float]] = None,
|
76 |
+
**kwargs,
|
77 |
+
):
|
78 |
+
if timesteps is not None and sigmas is not None:
|
79 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
80 |
+
if timesteps is not None:
|
81 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
82 |
+
timesteps = scheduler.timesteps
|
83 |
+
num_inference_steps = len(timesteps)
|
84 |
+
elif sigmas is not None:
|
85 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
86 |
+
timesteps = scheduler.timesteps
|
87 |
+
num_inference_steps = len(timesteps)
|
88 |
+
else:
|
89 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
90 |
+
timesteps = scheduler.timesteps
|
91 |
+
return timesteps, num_inference_steps
|
92 |
+
|
93 |
+
# FLUX pipeline function
|
94 |
+
@torch.inference_mode()
|
95 |
+
def flux_pipe_call_that_returns_an_iterable_of_images(
|
96 |
+
self,
|
97 |
+
prompt: Union[str, List[str]] = None,
|
98 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
99 |
+
height: Optional[int] = None,
|
100 |
+
width: Optional[int] = None,
|
101 |
+
num_inference_steps: int = 28,
|
102 |
+
timesteps: List[int] = None,
|
103 |
+
guidance_scale: float = 3.5,
|
104 |
+
num_images_per_prompt: Optional[int] = 1,
|
105 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
106 |
+
latents: Optional[torch.FloatTensor] = None,
|
107 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
108 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
109 |
+
output_type: Optional[str] = "pil",
|
110 |
+
return_dict: bool = True,
|
111 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
112 |
+
max_sequence_length: int = 512,
|
113 |
+
good_vae: Optional[Any] = None,
|
114 |
+
):
|
115 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
116 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
117 |
+
|
118 |
+
# 1. Check inputs
|
119 |
+
self.check_inputs(
|
120 |
+
prompt,
|
121 |
+
prompt_2,
|
122 |
+
height,
|
123 |
+
width,
|
124 |
+
prompt_embeds=prompt_embeds,
|
125 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
126 |
+
max_sequence_length=max_sequence_length,
|
127 |
+
)
|
128 |
+
|
129 |
+
self._guidance_scale = guidance_scale
|
130 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
131 |
+
self._interrupt = False
|
132 |
+
|
133 |
+
# 2. Define call parameters
|
134 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
135 |
+
device = self._execution_device
|
136 |
+
|
137 |
+
# 3. Encode prompt
|
138 |
+
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
139 |
+
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
140 |
+
prompt=prompt,
|
141 |
+
prompt_2=prompt_2,
|
142 |
+
prompt_embeds=prompt_embeds,
|
143 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
144 |
+
device=device,
|
145 |
+
num_images_per_prompt=num_images_per_prompt,
|
146 |
+
max_sequence_length=max_sequence_length,
|
147 |
+
lora_scale=lora_scale,
|
148 |
+
)
|
149 |
+
# 4. Prepare latent variables
|
150 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
151 |
+
latents, latent_image_ids = self.prepare_latents(
|
152 |
+
batch_size * num_images_per_prompt,
|
153 |
+
num_channels_latents,
|
154 |
+
height,
|
155 |
+
width,
|
156 |
+
prompt_embeds.dtype,
|
157 |
+
device,
|
158 |
+
generator,
|
159 |
+
latents,
|
160 |
+
)
|
161 |
+
# 5. Prepare timesteps
|
162 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
163 |
+
image_seq_len = latents.shape[1]
|
164 |
+
mu = calculate_shift(
|
165 |
+
image_seq_len,
|
166 |
+
self.scheduler.config.base_image_seq_len,
|
167 |
+
self.scheduler.config.max_image_seq_len,
|
168 |
+
self.scheduler.config.base_shift,
|
169 |
+
self.scheduler.config.max_shift,
|
170 |
+
)
|
171 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
172 |
+
self.scheduler,
|
173 |
+
num_inference_steps,
|
174 |
+
device,
|
175 |
+
timesteps,
|
176 |
+
sigmas,
|
177 |
+
mu=mu,
|
178 |
+
)
|
179 |
+
self._num_timesteps = len(timesteps)
|
180 |
+
|
181 |
+
# Handle guidance
|
182 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
183 |
+
|
184 |
+
# 6. Denoising loop
|
185 |
+
for i, t in enumerate(timesteps):
|
186 |
+
if self.interrupt:
|
187 |
+
continue
|
188 |
+
|
189 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
190 |
+
|
191 |
+
noise_pred = self.transformer(
|
192 |
+
hidden_states=latents,
|
193 |
+
timestep=timestep / 1000,
|
194 |
+
guidance=guidance,
|
195 |
+
pooled_projections=pooled_prompt_embeds,
|
196 |
+
encoder_hidden_states=prompt_embeds,
|
197 |
+
txt_ids=text_ids,
|
198 |
+
img_ids=latent_image_ids,
|
199 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
200 |
+
return_dict=False,
|
201 |
+
)[0]
|
202 |
+
# Yield intermediate result
|
203 |
+
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
204 |
+
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
205 |
+
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
206 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
207 |
+
|
208 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
209 |
+
torch.cuda.empty_cache()
|
210 |
+
|
211 |
+
# Final image using good_vae
|
212 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
213 |
+
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
214 |
+
image = good_vae.decode(latents, return_dict=False)[0]
|
215 |
+
self.maybe_free_model_hooks()
|
216 |
+
torch.cuda.empty_cache()
|
217 |
+
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
218 |
|
219 |
def log(msg):
|
220 |
print(f'{datetime.now().time()} {msg}')
|
|
|
608 |
# precision data
|
609 |
|
610 |
seq=512
|
611 |
+
image_steps=25
|
612 |
+
img_accu=3.5
|
613 |
|
614 |
# ui data
|
615 |
|
|
|
670 |
# torch pipes
|
671 |
|
672 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
673 |
+
good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=dtype).to(device)
|
674 |
image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype, vae=taef1).to(device)
|
675 |
image_pipe.enable_model_cpu_offload()
|
676 |
+
|
677 |
+
torch.cuda.empty_cache()
|
678 |
+
|
679 |
+
image_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(image_pipe)
|
680 |
|
681 |
# functionality
|
682 |
|
|
|
684 |
input_image: Image.Image,
|
685 |
prompt: str = "Hyper realistic photography, Natural visual content.",
|
686 |
negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
|
687 |
+
seed: int = random.randint(0, MAX_SEED),
|
688 |
upscale_factor: int = 2,
|
689 |
controlnet_scale: float = 0.6,
|
690 |
controlnet_decay: float = 1.0,
|
|
|
692 |
tile_width: int = 112,
|
693 |
tile_height: int = 144,
|
694 |
denoise_strength: float = 0.35,
|
695 |
+
num_inference_steps: int = 15,
|
696 |
solver: str = "DDIM",
|
697 |
) -> Image.Image:
|
698 |
|
|
|
736 |
toks = tokenizer.encode( prefix + text, return_tensors="pt", truncation=False)
|
737 |
gen = model.generate(
|
738 |
toks,
|
739 |
+
length_penalty=0.5,
|
740 |
+
num_beams=4,
|
741 |
early_stopping=True,
|
742 |
max_length=512
|
743 |
)
|
|
|
745 |
log(f'RET _summarize with ret as {ret}')
|
746 |
return ret
|
747 |
|
748 |
+
def summarize(text, max_len=500):
|
749 |
log(f'CALL summarize')
|
750 |
|
751 |
words = text.split()
|
752 |
+
words_length = len(words)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
|
754 |
if words_length >= 510:
|
755 |
while words_length >= 510:
|
|
|
762 |
text = summ
|
763 |
words_length = len(text.split())
|
764 |
|
765 |
+
while len(text) > max_len:
|
766 |
summ = _summarize(text)
|
767 |
if summ == text:
|
768 |
return text
|
769 |
text = summ
|
|
|
770 |
|
771 |
log(f'RET summarize with text as {text}')
|
772 |
return text
|
|
|
776 |
return ''.join(random.choice(characters) for _ in range(length))
|
777 |
|
778 |
def pipe_generate_image(p1,p2,h,w):
|
779 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
|
|
780 |
prompt=p1,
|
781 |
negative_prompt=p2,
|
782 |
height=h,
|
|
|
786 |
num_inference_steps=image_steps,
|
787 |
max_sequence_length=seq,
|
788 |
generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
|
789 |
+
):
|
790 |
+
yield img
|
|
|
791 |
|
792 |
def add_song_cover_text(img,artist,song,h,w):
|
793 |
|
|
|
1426 |
|
1427 |
def translate(txt,to_lang="en",from_lang="auto"):
|
1428 |
log(f'CALL translate')
|
1429 |
+
if from_lang == to_lang or get_language(txt) == to_lang:
|
1430 |
+
print("Translation failed!")
|
1431 |
+
return txt.strip().lower()
|
1432 |
translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
|
1433 |
translation = ""
|
1434 |
if len(txt) > 1000:
|
|
|
1479 |
pos_lyrics = pos_lyrics if pos_lyrics == "" else summarize(translate(pos_lyrics))
|
1480 |
pos_lyrics = re.sub(r"([ \t]){1,}", " ", pos_lyrics).lower().strip()
|
1481 |
|
1482 |
+
neg = f"Textual, Text, Distorted, Fake, Discontinuous, Blurry, Doll-Like, Overly Plastic, Low Quality, Paint, Smoothed, Artificial, Phony, Gaudy, Digital Effects."
|
1483 |
q = "\""
|
1484 |
pos = f'HQ Hyper-realistic professional photograph{ pos_lyrics if pos_lyrics == "" else ": " + q + pos_lyrics + q }.'
|
1485 |
|
|
|
1492 |
img = all_pipes(pos,neg,h,w)
|
1493 |
|
1494 |
labeled_img = add_song_cover_text(img,pos_artist,pos_song,h,w)
|
1495 |
+
name = f'{generate_random_string(16)}.png'
|
1496 |
labeled_img.save(name)
|
1497 |
|
1498 |
working = False
|