Spaces:
Running
Running
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ from huggingface_hub import hf_hub_download
|
|
31 |
from safetensors.torch import load_file, save_file
|
32 |
from diffusers import FluxPipeline
|
33 |
from PIL import Image, ImageDraw, ImageFont
|
34 |
-
from transformers import pipeline
|
35 |
from refiners.fluxion.utils import manual_seed
|
36 |
from refiners.foundationals.latent_diffusion import Solver, solvers
|
37 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
@@ -40,6 +40,9 @@ from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler i
|
|
40 |
)
|
41 |
from datetime import datetime
|
42 |
|
|
|
|
|
|
|
43 |
def log(msg):
|
44 |
print(f'{datetime.now().time()} {msg}')
|
45 |
|
@@ -546,11 +549,18 @@ def upscaler(
|
|
546 |
return enhanced_image
|
547 |
|
548 |
def summarize_text(
|
549 |
-
text
|
550 |
):
|
551 |
log(f'CALL summarize_text')
|
552 |
-
|
553 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
log(f'RET summarize_text with summary as {summary}')
|
555 |
return summary
|
556 |
|
@@ -638,7 +648,7 @@ def handle_generation(artist,song,genre,lyrics):
|
|
638 |
index = 1
|
639 |
names = []
|
640 |
for img in imgs:
|
641 |
-
scaled_by =
|
642 |
labeled_img = add_song_cover_text(img,artist,song,height*scaled_by,width*scaled_by)
|
643 |
name = f'{artist} - {song} ({index}).png'
|
644 |
labeled_img.save(name)
|
|
|
31 |
from safetensors.torch import load_file, save_file
|
32 |
from diffusers import FluxPipeline
|
33 |
from PIL import Image, ImageDraw, ImageFont
|
34 |
+
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
|
35 |
from refiners.fluxion.utils import manual_seed
|
36 |
from refiners.foundationals.latent_diffusion import Solver, solvers
|
37 |
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
|
|
40 |
)
|
41 |
from datetime import datetime
|
42 |
|
43 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-large")
|
44 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-large")
|
45 |
+
|
46 |
def log(msg):
|
47 |
print(f'{datetime.now().time()} {msg}')
|
48 |
|
|
|
549 |
return enhanced_image
|
550 |
|
551 |
def summarize_text(
|
552 |
+
text, max_len=20, min_len=10
|
553 |
):
|
554 |
log(f'CALL summarize_text')
|
555 |
+
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=float('inf'), truncation=False)
|
556 |
+
while len(inputs[0]) > max_len:
|
557 |
+
inputs[0][:512] = model.generate(
|
558 |
+
inputs[0][:512],
|
559 |
+
length_penalty=2.0,
|
560 |
+
num_beams=4,
|
561 |
+
early_stopping=True
|
562 |
+
)
|
563 |
+
summary = tokenizer.decode(inputs[0])
|
564 |
log(f'RET summarize_text with summary as {summary}')
|
565 |
return summary
|
566 |
|
|
|
648 |
index = 1
|
649 |
names = []
|
650 |
for img in imgs:
|
651 |
+
scaled_by = 2
|
652 |
labeled_img = add_song_cover_text(img,artist,song,height*scaled_by,width*scaled_by)
|
653 |
name = f'{artist} - {song} ({index}).png'
|
654 |
labeled_img.save(name)
|