yaron123 commited on
Commit
df91595
·
1 Parent(s): b8266b6
Files changed (1) hide show
  1. app.py +22 -4
app.py CHANGED
@@ -38,7 +38,10 @@ from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler i
38
  MultiUpscaler,
39
  UpscalerCheckpoints,
40
  )
 
41
 
 
 
42
 
43
  Tile = tuple[int, int, Image.Image]
44
  Tiles = list[tuple[int, int, list[Tile]]]
@@ -500,7 +503,7 @@ function custom(){
500
  # torch pipes
501
 
502
  image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
503
- image_pipe.enable_model_cpu_offload()
504
 
505
  # functionality
506
 
@@ -509,7 +512,7 @@ def upscaler(
509
  input_image: Image.Image,
510
  prompt: str = "masterpiece, best quality, highres",
511
  negative_prompt: str = "worst quality, low quality, normal quality",
512
- seed: int = 42,
513
  upscale_factor: int = 8,
514
  controlnet_scale: float = 0.6,
515
  controlnet_decay: float = 1.0,
@@ -520,10 +523,15 @@ def upscaler(
520
  num_inference_steps: int = 18,
521
  solver: str = "DDIM",
522
  ) -> Image.Image:
 
 
 
523
  manual_seed(seed)
524
 
525
  solver_type: type[Solver] = getattr(solvers, solver)
526
 
 
 
527
  enhanced_image = enhancer.upscale(
528
  image=input_image,
529
  prompt=prompt,
@@ -539,6 +547,8 @@ def upscaler(
539
  solver_type=solver_type,
540
  )
541
 
 
 
542
  return enhanced_image
543
 
544
  @spaces.GPU(duration=180)
@@ -547,12 +557,15 @@ def summarize_text(
547
  pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
548
  pegasus_model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
549
  ):
550
- return pegasus_tokenizer.decode( pegasus_model.generate(
 
551
  pegasus_tokenizer(text,return_tensors="pt").input_ids,
552
  max_length=max_length,
553
  num_beams=num_beams,
554
  early_stopping=early_stopping
555
  )[0], skip_special_tokens=True)
 
 
556
 
557
  def generate_random_string(length):
558
  characters = str(ascii_letters + digits)
@@ -560,7 +573,8 @@ def generate_random_string(length):
560
 
561
  @spaces.GPU(duration=180)
562
  def pipe_generate(p1,p2):
563
- return image_pipe(
 
564
  prompt=p1,
565
  negative_prompt=p2,
566
  height=height,
@@ -571,9 +585,13 @@ def pipe_generate(p1,p2):
571
  max_sequence_length=seq,
572
  generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
573
  ).images[0]
 
 
574
 
575
  def handle_generate(artist,song,genre,lyrics):
576
 
 
 
577
  pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
578
  pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
579
  pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())
 
38
  MultiUpscaler,
39
  UpscalerCheckpoints,
40
  )
41
+ from datetime import datetime
42
 
43
+ def log(msg):
44
+ print(f'{datetime.now().time()} {msg}')
45
 
46
  Tile = tuple[int, int, Image.Image]
47
  Tiles = list[tuple[int, int, list[Tile]]]
 
503
  # torch pipes
504
 
505
  image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device)
506
+ #image_pipe.enable_model_cpu_offload()
507
 
508
  # functionality
509
 
 
512
  input_image: Image.Image,
513
  prompt: str = "masterpiece, best quality, highres",
514
  negative_prompt: str = "worst quality, low quality, normal quality",
515
+ seed: int = int(str(random.random()).split(".")[1]),
516
  upscale_factor: int = 8,
517
  controlnet_scale: float = 0.6,
518
  controlnet_decay: float = 1.0,
 
523
  num_inference_steps: int = 18,
524
  solver: str = "DDIM",
525
  ) -> Image.Image:
526
+
527
+ log(f'CALL upscaler')
528
+
529
  manual_seed(seed)
530
 
531
  solver_type: type[Solver] = getattr(solvers, solver)
532
 
533
+ log(f'DBG upscaler 1')
534
+
535
  enhanced_image = enhancer.upscale(
536
  image=input_image,
537
  prompt=prompt,
 
547
  solver_type=solver_type,
548
  )
549
 
550
+ log(f'RET upscaler')
551
+
552
  return enhanced_image
553
 
554
  @spaces.GPU(duration=180)
 
557
  pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
558
  pegasus_model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
559
  ):
560
+ log(f'CALL summarize_text')
561
+ summary = pegasus_tokenizer.decode( pegasus_model.generate(
562
  pegasus_tokenizer(text,return_tensors="pt").input_ids,
563
  max_length=max_length,
564
  num_beams=num_beams,
565
  early_stopping=early_stopping
566
  )[0], skip_special_tokens=True)
567
+ log(f'RET summarize_text with summary as {summary}')
568
+ return summary
569
 
570
  def generate_random_string(length):
571
  characters = str(ascii_letters + digits)
 
573
 
574
  @spaces.GPU(duration=180)
575
  def pipe_generate(p1,p2):
576
+ log(f'CALL pipe_generate')
577
+ img = image_pipe(
578
  prompt=p1,
579
  negative_prompt=p2,
580
  height=height,
 
585
  max_sequence_length=seq,
586
  generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1]))
587
  ).images[0]
588
+ log(f'RET pipe_generate')
589
+ return img
590
 
591
  def handle_generate(artist,song,genre,lyrics):
592
 
593
+ log(f'CALL handle_generate')
594
+
595
  pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip()
596
  pos_song = re.sub("([ \t\n]){1,}", " ", song).strip()
597
  pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split())