Kokoro-API-4 / app.py
Yaron Koresh
Update app.py
8faa958 verified
raw
history blame
14.5 kB
# built-in
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
from concurrent.futures import ProcessPoolExecutor
import threading
import asyncio
from queue import Queue as BlockingQueue
from functools import partial
# external
import torch
import gradio as gr
from numpy import asarray as array
from lxml.html import fromstring
from diffusers.utils import export_to_gif, load_image
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, EulerAncestralDiscreteScheduler, DDIMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL, UNet3DConditionModel
# logging
warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.DEBUG)
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)
handler2 = logging.StreamHandler(sys.stderr)
handler2.setLevel(logging.DEBUG)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler2.setFormatter(formatter)
root.addHandler(handler2)
# constant data
dtype = torch.float16
device = "cuda"
#repo = "ByteDance/AnimateDiff-Lightning"
#ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
#base = "emilianJR/epiCRealism"
base = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
#vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=dtype)
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
# variable data
last_motion=""
result = []
# precision data
fast=True
fps=10
time=1
width=896
height=896
step=25
accu=7.5
# ui data
css="".join(["""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
width: 100%;
text-align: center;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto;
max-width: 15cm;
}
.image-container {
aspect-ratio: """,str(width),"/",str(height),""" !important;
}
.dropdown-arrow {
display: none !important;
}
*:has(>.btn) {
display: flex;
justify-content: space-evenly;
align-items: center;
}
.btn {
display: flex;
}
"""])
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38")
document.querySelector("div#prompt2 input").setAttribute("maxlength","38")
}
"""
# torch pipe
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter).to(device)
pipe.scheduler = DDIMScheduler(
clip_sample=False,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
timestep_spacing="trailing",
steps_offset=1
)
#pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.enable_free_init(method="butterworth", use_fast_sampling=fast)
# Threading
class TwoSidedQueue:
def __init__(self, queue_in, queue_out):
self._queue_in = queue_in
self._queue_out = queue_out
self._sides = {
'empty': queue_out,
'full': queue_out,
'get': queue_in,
'get_nowait': queue_in,
'join': queue_out,
'put': queue_out,
'put_nowait': queue_out,
'qsize': queue_out,
'task_done': queue_in,
}
def __getattr__(self, name):
return getattr(self._sides.get(name, self._queue_in), name)
class LaunchAsync:
def __init__(self, coro, *args, **kwargs):
self._coro = coro
self._args = args
self._kwargs = kwargs
self._thread = None
self._loop = None
self._task = None
self._queue_in = None
self._queue_out = None
self._size = 0
def size(self, size):
self._size = size or 0
return self
def put(self, data, *, timeout=None):
"""
`put` data in for the `coro` to `get` out. Will block if the maximum `size` was reached.
Does nothing if the `coro` is dead.
"""
try:
return asyncio.run_coroutine_threadsafe(self._queue_out.put(data), self._loop).result(timeout)
except RuntimeError:
if self._loop.is_running():
raise
else:
return None
def get(self, *, timeout=None):
"""
`get` data out of the `coro` it `put` in. Will block if the queue is empty.
Returns `None` if the `coro` is dead.
"""
try:
return asyncio.run_coroutine_threadsafe(self._queue_in.get(), self._loop).result(timeout)
except RuntimeError:
if self._loop.is_running():
raise
else:
return None
def dead(self):
"""
Return `true` if the other side is dead (the `coro` has exited, with or without error).
"""
return not self._loop.is_running()
def __enter__(self):
# asyncio.run is used as it's a battle-tested way to safely set up a new loop and tear
# it down. However it does mean it's necessary to wait for the task to run before it's
# possible to get said loop and task back. For this, the usual blocking queue is used.
oneshot = BlockingQueue(1)
self._thread = threading.Thread(target=asyncio.run, args=(
self._run(self._coro, self._size, oneshot, self._args, self._kwargs),))
self._thread.start()
self._loop, self._task, self._queue_in, self._queue_out = oneshot.get()
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
try:
self._loop.call_soon_threadsafe(self._task.cancel)
except RuntimeError:
if self._loop.is_running():
raise
finally:
self._thread.join()
@staticmethod
async def _run(coro, size, oneshot, args, kwargs):
# asyncio.Queue's are created here so that they pick up the right loop.
queue_in, queue_out = asyncio.Queue(size), asyncio.Queue(size)
oneshot.put((asyncio.get_event_loop(), asyncio.current_task(), queue_in, queue_out))
try:
# `queue_in` and `queue_out` are intentionally swapped here.
await coro(TwoSidedQueue(queue_out, queue_in), *args, **kwargs)
except asyncio.CancelledError:
pass
class Command:
def __init__(self, func, data=None):
self.func = func
self.data = data
def parallel(timeout,*pairs):
if len(pairs) == 0:
return
if len(pairs) == 1:
pairs = pairs[0]
async def async_main(queue):
while True:
command = await queue.get()
await queue.put(command.func(*command.data))
with LaunchAsync(async_main) as queue:
for pair in pairs:
f = pair.pop(0)
queue.put(Command(f, pair))
return iter(queue.get(timeout=timeout))
# functionality
def run(cmd):
return str(subprocess.run(cmd, shell=True, capture_output=True, env=None).stdout)
def xpath_finder(str,pattern):
try:
return ""+fromstring(str).xpath(pattern)[0].text_content().lower().strip()
except:
return ""
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
content = str(requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
).content)
translated = text
src_lang = xpath_finder(content,'//*[@class="source-language"]')
trgt_lang = xpath_finder(content,'//*[@class="target-language"]')
src_text = xpath_finder(content,'//*[@id="tw-source-text"]/*')
trgt_text = xpath_finder(content,'//*[@id="tw-target-text"]/*')
if trgt_lang == lang:
translated = trgt_text
ret = re.sub(f'[{punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = str(ascii_letters + digits)
return ''.join(random.choice(characters) for _ in range(length))
def calc(img,p1,p2,motion):
global last_motion
global pipe
if last_motion != motion:
if last_motion != "":
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.fuse_lora()
pipe.set_adapters("motion", [0.7])
last_motion = motion
pipe.to(device,dtype=dtype)
return pipe(
prompt=p1,
negative_prompt=p2,
height=height,
width=width,
ip_adapter_image=img.convert("RGB"),
num_inference_steps=step,
guidance_scale=accu,
num_frames=(fps*time)
)
def handle(*inp):
inp = list(inp)
inp[1] = translate(inp[1],"english")
inp[2] = translate(inp[2],"english")
if inp[0] == None:
return None
if inp[2] != "":
inp[2] = f", {inp[2]}"
inp[2] = f"(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck{inp[2]}"
_do = ['photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable', "natural", 'rough', 'best quality', 'focused', "highly detailed"]
if inp[1] != "":
_do.append(f"a new {inp[1]} content in the image")
inp[1] = ", ".join(_do)
ln = len(result)
parargs = [[calc,*inp] for i in range(ln)]
out_pipe = parallel(5,parargs)
names = []
for i in out_pipe:
name = generate_random_string(12)+".png"
export_to_gif(i.frames[0],name,fps=fps)
names.append( name )
return names
def ui():
global result
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# MULTI-LANGUAGE GIF CREATOR
""")
with gr.Row():
img = gr.Image(label="STATIC PHOTO",show_label=True,container=True,type="pil")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="INCLUDE",
container=False,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="EXCLUDE",
container=False,
max_lines=1
)
with gr.Row():
motion = gr.Dropdown(
label='CAMERA',
show_label=True,
container=True,
choices=[
("(No Effect)", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="",
interactive=True
)
with gr.Row():
run_button = gr.Button("START",elem_classes="btn",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
gr.on(
triggers=[
run_button.click,
prompt.submit,
prompt2.submit
],
fn=handle,
inputs=[img,prompt,prompt2,motion],
outputs=result
)
demo.queue().launch()
# entry
if __name__ == "__main__":
os.chdir(os.path.abspath(os.path.dirname(__file__)))
ui()
# end