Kokoro-API-4 / app.py
Yaron Koresh
Update app.py
f7a31e7 verified
raw
history blame
6.95 kB
import os
import re
import spaces
import random
import string
import torch
import requests
import gradio as gr
import numpy as np
from lxml.html import fromstring
from diffusers import AutoPipelineForText2Image
#from tempfile import NamedTemporaryFile
from pathos.threading import ThreadPool as Pool
#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
def translate(text,lang):
if text == None or lang == None:
return ""
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
if text == "" or lang == "":
return ""
if len(text) > 38:
raise Exception("Translation Error: Too long text!")
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip()
query_text = f'Please translate {padded_chars}, into {lang}'
url = f'https://www.google.com/search?q={query_text}'
print(url)
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
translated = text
try:
src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip()
trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip()
src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip()
trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip()
if trgt_lang == lang:
translated = trgt_text
except:
print(f'Translation Warning: Failed To Translate!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=120)
def Piper(_do,_dont):
return pipe(
_do,
height=1024,
width=2048,
negative_prompt=_dont,
num_inference_steps=100,
guidance_scale=10
)
def infer(prompt_en,prompt2_en):
name = generate_random_string(12)+".png"
if prompt_en == "":
_do = 'photographed reasonable situation'
else:
_do = f'photographed { prompt_en } reasonable situation'
if prompt2_en == "":
_dont = 'unformed, unproportional, boring, smooth, fictional, blurred, twisted, distorted, divined, human body defects, deformed fingers, ugly fingers, wrong fingers, damaged, signs, prints'
else:
_dont = f'{prompt2_en} in photographed {prompt_en}, unformed, unproportional, boring, smooth, fictional, blurred, twisted, distorted, divined, human body defects, deformed fingers, ugly fingers, wrong fingers, damaged, signs, prints'
image = Piper(_do,_dont).images[0].save(name)
return name
css="""
input, input::placeholder {
text-align: center !important;
}
*, *::placeholder {
direction: rtl !important;
font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6,span,p,pre {
width: 100% !important;
text-align: center !important;
display: block !important;
}
footer {
display: none !important;
}
#col-container {
margin: 0 auto !important;
max-width: 15cm !important;
}
.image-container {
aspect-ratio: 2048 / 1024 !important;
}
.dropdown-arrow {
display: none !important;
button {
margin: 0 auto !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","27");
document.querySelector("div#prompt2 input").setAttribute("maxlength","27");
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
result = []
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# 诪讞讜诇诇 转诪讜谞讜转 {power_device}
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="诪讛 *讻谉* 诇讛讜住讬祝",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
prompt2 = gr.Textbox(
elem_id="prompt2",
placeholder="诪讛 *诇讗* 诇讛讜住讬祝",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("讛转讞诇讛",scale=0)
with gr.Row():
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False))
def _ret(idx,p1,p2):
print(f'Starting {idx}: {p1} {p2}')
v = infer(p1,p2)
print(f'Finished {idx}: {v}')
return v
def _rets(p1,p2):
p1_en = translate(p1,"english")
p2_en = translate(p2,"english")
ln = len(result)
idxs = list(range(ln))
p1s = [p1_en for _ in idxs]
p2s = [p2_en for _ in idxs]
return list(Pool(ln).imap( _ret, idxs, p1s, p2s ))
run_button.click(fn=_rets,inputs=[prompt,prompt2],outputs=result)
demo.queue().launch()