Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	commit
Browse files- app.py +456 -34
- requirements.txt +4 -2
    	
        app.py
    CHANGED
    
    | @@ -14,11 +14,14 @@ import warnings | |
| 14 | 
             
            import time
         | 
| 15 | 
             
            import asyncio
         | 
| 16 | 
             
            import math
         | 
|  | |
| 17 | 
             
            from functools import partial
         | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
             
            import spaces
         | 
|  | |
|  | |
| 22 | 
             
            import torch
         | 
| 23 | 
             
            import gradio as gr
         | 
| 24 | 
             
            from lxml.html import fromstring
         | 
| @@ -27,6 +30,396 @@ from safetensors.torch import load_file, save_file | |
| 27 | 
             
            from diffusers import FluxPipeline
         | 
| 28 | 
             
            from PIL import Image, ImageDraw, ImageFont
         | 
| 29 | 
             
            from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 30 |  | 
| 31 | 
             
            # logging
         | 
| 32 |  | 
| @@ -41,19 +434,14 @@ root.addHandler(handler) | |
| 41 |  | 
| 42 | 
             
            # constant data
         | 
| 43 |  | 
| 44 | 
            -
            if torch.cuda.is_available():
         | 
| 45 | 
            -
                device = "cuda"
         | 
| 46 | 
            -
            else:
         | 
| 47 | 
            -
                device = "cpu"
         | 
| 48 | 
            -
             | 
| 49 | 
             
            base = "black-forest-labs/FLUX.1-schnell"
         | 
| 50 | 
             
            pegasus_name = "google/pegasus-xsum"
         | 
| 51 |  | 
| 52 | 
             
            # precision data
         | 
| 53 |  | 
| 54 | 
             
            seq=512
         | 
| 55 | 
            -
            width= | 
| 56 | 
            -
            height= | 
| 57 | 
             
            image_steps=8
         | 
| 58 | 
             
            img_accu=0
         | 
| 59 |  | 
| @@ -123,7 +511,44 @@ image_pipe.enable_model_cpu_offload() | |
| 123 |  | 
| 124 | 
             
            # functionality
         | 
| 125 |  | 
| 126 | 
            -
            @spaces.GPU(duration= | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 127 | 
             
            def summarize_text(
         | 
| 128 | 
             
                text, max_length=30, num_beams=16, early_stopping=True, 
         | 
| 129 | 
             
                pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
         | 
| @@ -140,7 +565,7 @@ def generate_random_string(length): | |
| 140 | 
             
                characters = str(ascii_letters + digits)
         | 
| 141 | 
             
                return ''.join(random.choice(characters) for _ in range(length))
         | 
| 142 |  | 
| 143 | 
            -
            @spaces.GPU(duration= | 
| 144 | 
             
            def pipe_generate(p1,p2):
         | 
| 145 | 
             
                return image_pipe(
         | 
| 146 | 
             
                        prompt=p1,
         | 
| @@ -162,8 +587,8 @@ def handle_generate(artist,song,genre,lyrics): | |
| 162 | 
             
                pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
         | 
| 163 | 
             
                pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
         | 
| 164 | 
             
                pos_lyrics_sum = summarize_text(pos_lyrics)
         | 
| 165 | 
            -
                neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry"
         | 
| 166 | 
            -
                pos = f'Realistic  | 
| 167 |  | 
| 168 | 
             
                print(f"""
         | 
| 169 | 
             
                    Positive: {pos}
         | 
| @@ -176,26 +601,28 @@ def handle_generate(artist,song,genre,lyrics): | |
| 176 | 
             
                draw = ImageDraw.Draw(img)
         | 
| 177 |  | 
| 178 | 
             
                rows = 1
         | 
| 179 | 
            -
                 | 
| 180 |  | 
| 181 | 
             
                textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
         | 
| 182 | 
             
                font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
         | 
| 183 | 
             
                textwidth = draw.textlength(pos_song,font)
         | 
| 184 | 
             
                x = math.ceil((width - textwidth) / 2)
         | 
| 185 | 
            -
                y =  | 
| 186 | 
            -
                y = y - math.ceil(y /  | 
| 187 | 
            -
                draw.text((x, y), pos_song, (255,255,255), font=font)
         | 
| 188 |  | 
| 189 | 
             
                textheight=min(math.ceil( width / 12 ), math.ceil( height / 6 ))
         | 
| 190 | 
             
                font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
         | 
| 191 | 
             
                textwidth = draw.textlength(pos_artist,font)
         | 
| 192 | 
             
                x = math.ceil((width - textwidth) / 2)
         | 
| 193 | 
            -
                y =  | 
| 194 | 
            -
                y = y + math.ceil(y /  | 
| 195 | 
            -
                draw.text((x, y), pos_artist, ( | 
|  | |
|  | |
| 196 |  | 
| 197 | 
             
                name = generate_random_string(12) + ".png"
         | 
| 198 | 
            -
                 | 
| 199 | 
             
                return name
         | 
| 200 |  | 
| 201 | 
             
            # entry
         | 
| @@ -205,36 +632,33 @@ if __name__ == "__main__": | |
| 205 | 
             
                    gr.Markdown(f"""
         | 
| 206 | 
             
                        # Song Cover Image Generator
         | 
| 207 | 
             
                    """)
         | 
| 208 | 
            -
                    with gr. | 
| 209 | 
            -
                        with gr. | 
| 210 | 
             
                            artist = gr.Textbox(
         | 
| 211 | 
             
                                placeholder="Artist name",
         | 
| 212 | 
             
                                container=False,
         | 
| 213 | 
             
                                max_lines=1
         | 
| 214 | 
             
                            )
         | 
| 215 | 
            -
                        with gr.Column():
         | 
| 216 | 
             
                            song = gr.Textbox(
         | 
| 217 | 
             
                                placeholder="Song name",
         | 
| 218 | 
             
                                container=False,
         | 
| 219 | 
             
                                max_lines=1
         | 
| 220 | 
             
                            )
         | 
| 221 | 
            -
                         | 
| 222 | 
            -
                            genre = gr.Textbox(
         | 
| 223 | 
             
                                placeholder="Genre",
         | 
| 224 | 
             
                                container=False,
         | 
| 225 | 
             
                                max_lines=1
         | 
| 226 | 
            -
             | 
| 227 | 
            -
                    with gr.Row():
         | 
| 228 | 
             
                        lyrics = gr.Textbox(
         | 
| 229 | 
             
                            placeholder="Lyrics (English)",
         | 
| 230 | 
             
                            container=False,
         | 
| 231 | 
             
                            max_lines=1
         | 
| 232 | 
             
                        )
         | 
| 233 | 
            -
                    with gr. | 
| 234 | 
            -
                        run = gr.Button("Generate",elem_classes="btn")
         | 
| 235 | 
            -
                    with gr.Row():
         | 
| 236 | 
             
                        cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
         | 
| 237 |  | 
|  | |
|  | |
| 238 | 
             
                    run.click(
         | 
| 239 | 
             
                        fn=handle_generate,
         | 
| 240 | 
             
                        inputs=[artist,song,genre,lyrics],
         | 
| @@ -242,5 +666,3 @@ if __name__ == "__main__": | |
| 242 | 
             
                    )
         | 
| 243 |  | 
| 244 | 
             
                demo.queue().launch()
         | 
| 245 | 
            -
             | 
| 246 | 
            -
            # end
         | 
|  | |
| 14 | 
             
            import time
         | 
| 15 | 
             
            import asyncio
         | 
| 16 | 
             
            import math
         | 
| 17 | 
            +
            from pathlib import Path
         | 
| 18 | 
             
            from functools import partial
         | 
| 19 | 
            +
            from dataclasses import dataclass
         | 
| 20 | 
            +
            from typing import Any
         | 
| 21 | 
            +
            import pillow_heif
         | 
| 22 | 
             
            import spaces
         | 
| 23 | 
            +
            import numpy as np
         | 
| 24 | 
            +
            import numpy.typing as npt
         | 
| 25 | 
             
            import torch
         | 
| 26 | 
             
            import gradio as gr
         | 
| 27 | 
             
            from lxml.html import fromstring
         | 
|  | |
| 30 | 
             
            from diffusers import FluxPipeline
         | 
| 31 | 
             
            from PIL import Image, ImageDraw, ImageFont
         | 
| 32 | 
             
            from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast
         | 
| 33 | 
            +
            from refiners.fluxion.utils import manual_seed
         | 
| 34 | 
            +
            from refiners.foundationals.latent_diffusion import Solver, solvers
         | 
| 35 | 
            +
            from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
         | 
| 36 | 
            +
                MultiUpscaler,
         | 
| 37 | 
            +
                UpscalerCheckpoints,
         | 
| 38 | 
            +
            )
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            Tile = tuple[int, int, Image.Image]
         | 
| 42 | 
            +
            Tiles = list[tuple[int, int, list[Tile]]]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
         | 
| 45 | 
            +
                return nn.Sequential(
         | 
| 46 | 
            +
                    nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
         | 
| 47 | 
            +
                    nn.LeakyReLU(negative_slope=0.2, inplace=True),
         | 
| 48 | 
            +
                )
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            class ResidualDenseBlock_5C(nn.Module):
         | 
| 52 | 
            +
                """
         | 
| 53 | 
            +
                Residual Dense Block
         | 
| 54 | 
            +
                The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
         | 
| 55 | 
            +
                Modified options that can be used:
         | 
| 56 | 
            +
                    - "Partial Convolution based Padding" arXiv:1811.11718
         | 
| 57 | 
            +
                    - "Spectral normalization" arXiv:1802.05957
         | 
| 58 | 
            +
                    - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
         | 
| 59 | 
            +
                        {Rakotonirina} and A. {Rasoanaivo}
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def __init__(self, nf: int = 64, gc: int = 32) -> None:
         | 
| 63 | 
            +
                    super().__init__()  # type: ignore[reportUnknownMemberType]
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    self.conv1 = conv_block(nf, gc)
         | 
| 66 | 
            +
                    self.conv2 = conv_block(nf + gc, gc)
         | 
| 67 | 
            +
                    self.conv3 = conv_block(nf + 2 * gc, gc)
         | 
| 68 | 
            +
                    self.conv4 = conv_block(nf + 3 * gc, gc)
         | 
| 69 | 
            +
                    # Wrapped in Sequential because of key in state dict.
         | 
| 70 | 
            +
                    self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 73 | 
            +
                    x1 = self.conv1(x)
         | 
| 74 | 
            +
                    x2 = self.conv2(torch.cat((x, x1), 1))
         | 
| 75 | 
            +
                    x3 = self.conv3(torch.cat((x, x1, x2), 1))
         | 
| 76 | 
            +
                    x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
         | 
| 77 | 
            +
                    x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
         | 
| 78 | 
            +
                    return x5 * 0.2 + x
         | 
| 79 | 
            +
             | 
| 80 | 
            +
             | 
| 81 | 
            +
            class RRDB(nn.Module):
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                Residual in Residual Dense Block
         | 
| 84 | 
            +
                (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
         | 
| 85 | 
            +
                """
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                def __init__(self, nf: int) -> None:
         | 
| 88 | 
            +
                    super().__init__()  # type: ignore[reportUnknownMemberType]
         | 
| 89 | 
            +
                    self.RDB1 = ResidualDenseBlock_5C(nf)
         | 
| 90 | 
            +
                    self.RDB2 = ResidualDenseBlock_5C(nf)
         | 
| 91 | 
            +
                    self.RDB3 = ResidualDenseBlock_5C(nf)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 94 | 
            +
                    out = self.RDB1(x)
         | 
| 95 | 
            +
                    out = self.RDB2(out)
         | 
| 96 | 
            +
                    out = self.RDB3(out)
         | 
| 97 | 
            +
                    return out * 0.2 + x
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            class Upsample2x(nn.Module):
         | 
| 101 | 
            +
                """Upsample 2x."""
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def __init__(self) -> None:
         | 
| 104 | 
            +
                    super().__init__()  # type: ignore[reportUnknownMemberType]
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 107 | 
            +
                    return nn.functional.interpolate(x, scale_factor=2.0)  # type: ignore
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
            class ShortcutBlock(nn.Module):
         | 
| 111 | 
            +
                """Elementwise sum the output of a submodule to its input"""
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                def __init__(self, submodule: nn.Module) -> None:
         | 
| 114 | 
            +
                    super().__init__()  # type: ignore[reportUnknownMemberType]
         | 
| 115 | 
            +
                    self.sub = submodule
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 118 | 
            +
                    return x + self.sub(x)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
             | 
| 121 | 
            +
            class RRDBNet(nn.Module):
         | 
| 122 | 
            +
                def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
         | 
| 123 | 
            +
                    super().__init__()  # type: ignore[reportUnknownMemberType]
         | 
| 124 | 
            +
                    assert in_nc % 4 != 0  # in_nc is 3
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    self.model = nn.Sequential(
         | 
| 127 | 
            +
                        nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
         | 
| 128 | 
            +
                        ShortcutBlock(
         | 
| 129 | 
            +
                            nn.Sequential(
         | 
| 130 | 
            +
                                *(RRDB(nf) for _ in range(nb)),
         | 
| 131 | 
            +
                                nn.Conv2d(nf, nf, kernel_size=3, padding=1),
         | 
| 132 | 
            +
                            )
         | 
| 133 | 
            +
                        ),
         | 
| 134 | 
            +
                        Upsample2x(),
         | 
| 135 | 
            +
                        nn.Conv2d(nf, nf, kernel_size=3, padding=1),
         | 
| 136 | 
            +
                        nn.LeakyReLU(negative_slope=0.2, inplace=True),
         | 
| 137 | 
            +
                        Upsample2x(),
         | 
| 138 | 
            +
                        nn.Conv2d(nf, nf, kernel_size=3, padding=1),
         | 
| 139 | 
            +
                        nn.LeakyReLU(negative_slope=0.2, inplace=True),
         | 
| 140 | 
            +
                        nn.Conv2d(nf, nf, kernel_size=3, padding=1),
         | 
| 141 | 
            +
                        nn.LeakyReLU(negative_slope=0.2, inplace=True),
         | 
| 142 | 
            +
                        nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 146 | 
            +
                    return self.model(x)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
         | 
| 150 | 
            +
                # this code is adapted from https://github.com/victorca25/iNNfer
         | 
| 151 | 
            +
                scale2x = 0
         | 
| 152 | 
            +
                scalemin = 6
         | 
| 153 | 
            +
                n_uplayer = 0
         | 
| 154 | 
            +
                out_nc = 0
         | 
| 155 | 
            +
                nb = 0
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                for block in list(state_dict):
         | 
| 158 | 
            +
                    parts = block.split(".")
         | 
| 159 | 
            +
                    n_parts = len(parts)
         | 
| 160 | 
            +
                    if n_parts == 5 and parts[2] == "sub":
         | 
| 161 | 
            +
                        nb = int(parts[3])
         | 
| 162 | 
            +
                    elif n_parts == 3:
         | 
| 163 | 
            +
                        part_num = int(parts[1])
         | 
| 164 | 
            +
                        if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
         | 
| 165 | 
            +
                            scale2x += 1
         | 
| 166 | 
            +
                        if part_num > n_uplayer:
         | 
| 167 | 
            +
                            n_uplayer = part_num
         | 
| 168 | 
            +
                            out_nc = state_dict[block].shape[0]
         | 
| 169 | 
            +
                    assert "conv1x1" not in block  # no ESRGANPlus
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                nf = state_dict["model.0.weight"].shape[0]
         | 
| 172 | 
            +
                in_nc = state_dict["model.0.weight"].shape[1]
         | 
| 173 | 
            +
                scale = 2**scale2x
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                assert out_nc > 0
         | 
| 176 | 
            +
                assert nb > 0
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                return in_nc, out_nc, nf, nb, scale  # 3, 3, 64, 23, 4
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            # https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
         | 
| 181 | 
            +
            class Grid(NamedTuple):
         | 
| 182 | 
            +
                tiles: Tiles
         | 
| 183 | 
            +
                tile_w: int
         | 
| 184 | 
            +
                tile_h: int
         | 
| 185 | 
            +
                image_w: int
         | 
| 186 | 
            +
                image_h: int
         | 
| 187 | 
            +
                overlap: int
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            # adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
         | 
| 191 | 
            +
            def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
         | 
| 192 | 
            +
                w = image.width
         | 
| 193 | 
            +
                h = image.height
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                non_overlap_width = tile_w - overlap
         | 
| 196 | 
            +
                non_overlap_height = tile_h - overlap
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                cols = max(1, math.ceil((w - overlap) / non_overlap_width))
         | 
| 199 | 
            +
                rows = max(1, math.ceil((h - overlap) / non_overlap_height))
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
         | 
| 202 | 
            +
                dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                grid = Grid([], tile_w, tile_h, w, h, overlap)
         | 
| 205 | 
            +
                for row in range(rows):
         | 
| 206 | 
            +
                    row_images: list[Tile] = []
         | 
| 207 | 
            +
                    y1 = max(min(int(row * dy), h - tile_h), 0)
         | 
| 208 | 
            +
                    y2 = min(y1 + tile_h, h)
         | 
| 209 | 
            +
                    for col in range(cols):
         | 
| 210 | 
            +
                        x1 = max(min(int(col * dx), w - tile_w), 0)
         | 
| 211 | 
            +
                        x2 = min(x1 + tile_w, w)
         | 
| 212 | 
            +
                        tile = image.crop((x1, y1, x2, y2))
         | 
| 213 | 
            +
                        row_images.append((x1, tile_w, tile))
         | 
| 214 | 
            +
                    grid.tiles.append((y1, tile_h, row_images))
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                return grid
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            # https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
         | 
| 220 | 
            +
            def combine_grid(grid: Grid):
         | 
| 221 | 
            +
                def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
         | 
| 222 | 
            +
                    r = r * 255 / grid.overlap
         | 
| 223 | 
            +
                    return Image.fromarray(r.astype(np.uint8), "L")
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                mask_w = make_mask_image(
         | 
| 226 | 
            +
                    np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
         | 
| 227 | 
            +
                )
         | 
| 228 | 
            +
                mask_h = make_mask_image(
         | 
| 229 | 
            +
                    np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
         | 
| 230 | 
            +
                )
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
         | 
| 233 | 
            +
                for y, h, row in grid.tiles:
         | 
| 234 | 
            +
                    combined_row = Image.new("RGB", (grid.image_w, h))
         | 
| 235 | 
            +
                    for x, w, tile in row:
         | 
| 236 | 
            +
                        if x == 0:
         | 
| 237 | 
            +
                            combined_row.paste(tile, (0, 0))
         | 
| 238 | 
            +
                            continue
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                        combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
         | 
| 241 | 
            +
                        combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    if y == 0:
         | 
| 244 | 
            +
                        combined_image.paste(combined_row, (0, 0))
         | 
| 245 | 
            +
                        continue
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    combined_image.paste(
         | 
| 248 | 
            +
                        combined_row.crop((0, 0, combined_row.width, grid.overlap)),
         | 
| 249 | 
            +
                        (0, y),
         | 
| 250 | 
            +
                        mask=mask_h,
         | 
| 251 | 
            +
                    )
         | 
| 252 | 
            +
                    combined_image.paste(
         | 
| 253 | 
            +
                        combined_row.crop((0, grid.overlap, combined_row.width, h)),
         | 
| 254 | 
            +
                        (0, y + grid.overlap),
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                return combined_image
         | 
| 258 | 
            +
             | 
| 259 | 
            +
             | 
| 260 | 
            +
            class UpscalerESRGAN:
         | 
| 261 | 
            +
                def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
         | 
| 262 | 
            +
                    self.model_path = model_path
         | 
| 263 | 
            +
                    self.device = device
         | 
| 264 | 
            +
                    self.model = self.load_model(model_path)
         | 
| 265 | 
            +
                    self.to(device, dtype)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def __call__(self, img: Image.Image) -> Image.Image:
         | 
| 268 | 
            +
                    return self.upscale_without_tiling(img)
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def to(self, device: torch.device, dtype: torch.dtype):
         | 
| 271 | 
            +
                    self.device = device
         | 
| 272 | 
            +
                    self.dtype = dtype
         | 
| 273 | 
            +
                    self.model.to(device=device, dtype=dtype)
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                def load_model(self, path: Path) -> RRDBNet:
         | 
| 276 | 
            +
                    filename = path
         | 
| 277 | 
            +
                    state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device)  # type: ignore
         | 
| 278 | 
            +
                    in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
         | 
| 279 | 
            +
                    assert upscale == 4, "Only 4x upscaling is supported"
         | 
| 280 | 
            +
                    model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
         | 
| 281 | 
            +
                    model.load_state_dict(state_dict)
         | 
| 282 | 
            +
                    model.eval()
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                    return model
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
         | 
| 287 | 
            +
                    img_np = np.array(img)
         | 
| 288 | 
            +
                    img_np = img_np[:, :, ::-1]
         | 
| 289 | 
            +
                    img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
         | 
| 290 | 
            +
                    img_t = torch.from_numpy(img_np).float()  # type: ignore
         | 
| 291 | 
            +
                    img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
         | 
| 292 | 
            +
                    with torch.no_grad():
         | 
| 293 | 
            +
                        output = self.model(img_t)
         | 
| 294 | 
            +
                    output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
         | 
| 295 | 
            +
                    output = 255.0 * np.moveaxis(output, 0, 2)
         | 
| 296 | 
            +
                    output = output.astype(np.uint8)
         | 
| 297 | 
            +
                    output = output[:, :, ::-1]
         | 
| 298 | 
            +
                    return Image.fromarray(output, "RGB")
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                # https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
         | 
| 301 | 
            +
                def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
         | 
| 302 | 
            +
                    img = img.convert("RGB")
         | 
| 303 | 
            +
                    grid = split_grid(img)
         | 
| 304 | 
            +
                    newtiles: Tiles = []
         | 
| 305 | 
            +
                    scale_factor: int = 1
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    for y, h, row in grid.tiles:
         | 
| 308 | 
            +
                        newrow: list[Tile] = []
         | 
| 309 | 
            +
                        for tiledata in row:
         | 
| 310 | 
            +
                            x, w, tile = tiledata
         | 
| 311 | 
            +
                            output = self.upscale_without_tiling(tile)
         | 
| 312 | 
            +
                            scale_factor = output.width // tile.width
         | 
| 313 | 
            +
                            newrow.append((x * scale_factor, w * scale_factor, output))
         | 
| 314 | 
            +
                        newtiles.append((y * scale_factor, h * scale_factor, newrow))
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    newgrid = Grid(
         | 
| 317 | 
            +
                        newtiles,
         | 
| 318 | 
            +
                        grid.tile_w * scale_factor,
         | 
| 319 | 
            +
                        grid.tile_h * scale_factor,
         | 
| 320 | 
            +
                        grid.image_w * scale_factor,
         | 
| 321 | 
            +
                        grid.image_h * scale_factor,
         | 
| 322 | 
            +
                        grid.overlap * scale_factor,
         | 
| 323 | 
            +
                    )
         | 
| 324 | 
            +
                    output = combine_grid(newgrid)
         | 
| 325 | 
            +
                    return output
         | 
| 326 | 
            +
             | 
| 327 | 
            +
            @dataclass(kw_only=True)
         | 
| 328 | 
            +
            class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
         | 
| 329 | 
            +
                esrgan: Path
         | 
| 330 | 
            +
             | 
| 331 | 
            +
            class ESRGANUpscaler(MultiUpscaler):
         | 
| 332 | 
            +
                def __init__(
         | 
| 333 | 
            +
                    self,
         | 
| 334 | 
            +
                    checkpoints: ESRGANUpscalerCheckpoints,
         | 
| 335 | 
            +
                    device: torch.device,
         | 
| 336 | 
            +
                    dtype: torch.dtype,
         | 
| 337 | 
            +
                ) -> None:
         | 
| 338 | 
            +
                    super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
         | 
| 339 | 
            +
                    self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                def to(self, device: torch.device, dtype: torch.dtype):
         | 
| 342 | 
            +
                    self.esrgan.to(device=device, dtype=dtype)
         | 
| 343 | 
            +
                    self.sd = self.sd.to(device=device, dtype=dtype)
         | 
| 344 | 
            +
                    self.device = device
         | 
| 345 | 
            +
                    self.dtype = dtype
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
         | 
| 348 | 
            +
                    image = self.esrgan.upscale_with_tiling(image)
         | 
| 349 | 
            +
                    return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)
         | 
| 350 | 
            +
             | 
| 351 | 
            +
            pillow_heif.register_heif_opener()
         | 
| 352 | 
            +
            pillow_heif.register_avif_opener()
         | 
| 353 | 
            +
             | 
| 354 | 
            +
            CHECKPOINTS = ESRGANUpscalerCheckpoints(
         | 
| 355 | 
            +
                unet=Path(
         | 
| 356 | 
            +
                    hf_hub_download(
         | 
| 357 | 
            +
                        repo_id="refiners/juggernaut.reborn.sd1_5.unet",
         | 
| 358 | 
            +
                        filename="model.safetensors",
         | 
| 359 | 
            +
                        revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
         | 
| 360 | 
            +
                    )
         | 
| 361 | 
            +
                ),
         | 
| 362 | 
            +
                clip_text_encoder=Path(
         | 
| 363 | 
            +
                    hf_hub_download(
         | 
| 364 | 
            +
                        repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
         | 
| 365 | 
            +
                        filename="model.safetensors",
         | 
| 366 | 
            +
                        revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
         | 
| 367 | 
            +
                    )
         | 
| 368 | 
            +
                ),
         | 
| 369 | 
            +
                lda=Path(
         | 
| 370 | 
            +
                    hf_hub_download(
         | 
| 371 | 
            +
                        repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
         | 
| 372 | 
            +
                        filename="model.safetensors",
         | 
| 373 | 
            +
                        revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
         | 
| 374 | 
            +
                    )
         | 
| 375 | 
            +
                ),
         | 
| 376 | 
            +
                controlnet_tile=Path(
         | 
| 377 | 
            +
                    hf_hub_download(
         | 
| 378 | 
            +
                        repo_id="refiners/controlnet.sd1_5.tile",
         | 
| 379 | 
            +
                        filename="model.safetensors",
         | 
| 380 | 
            +
                        revision="48ced6ff8bfa873a8976fa467c3629a240643387",
         | 
| 381 | 
            +
                    )
         | 
| 382 | 
            +
                ),
         | 
| 383 | 
            +
                esrgan=Path(
         | 
| 384 | 
            +
                    hf_hub_download(
         | 
| 385 | 
            +
                        repo_id="philz1337x/upscaler",
         | 
| 386 | 
            +
                        filename="4x-UltraSharp.pth",
         | 
| 387 | 
            +
                        revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
         | 
| 388 | 
            +
                    )
         | 
| 389 | 
            +
                ),
         | 
| 390 | 
            +
                negative_embedding=Path(
         | 
| 391 | 
            +
                    hf_hub_download(
         | 
| 392 | 
            +
                        repo_id="philz1337x/embeddings",
         | 
| 393 | 
            +
                        filename="JuggernautNegative-neg.pt",
         | 
| 394 | 
            +
                        revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
         | 
| 395 | 
            +
                    )
         | 
| 396 | 
            +
                ),
         | 
| 397 | 
            +
                negative_embedding_key="string_to_param.*",
         | 
| 398 | 
            +
                loras={
         | 
| 399 | 
            +
                    "more_details": Path(
         | 
| 400 | 
            +
                        hf_hub_download(
         | 
| 401 | 
            +
                            repo_id="philz1337x/loras",
         | 
| 402 | 
            +
                            filename="more_details.safetensors",
         | 
| 403 | 
            +
                            revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
         | 
| 404 | 
            +
                        )
         | 
| 405 | 
            +
                    ),
         | 
| 406 | 
            +
                    "sdxl_render": Path(
         | 
| 407 | 
            +
                        hf_hub_download(
         | 
| 408 | 
            +
                            repo_id="philz1337x/loras",
         | 
| 409 | 
            +
                            filename="SDXLrender_v2.0.safetensors",
         | 
| 410 | 
            +
                            revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
         | 
| 411 | 
            +
                        )
         | 
| 412 | 
            +
                    )
         | 
| 413 | 
            +
                }
         | 
| 414 | 
            +
            )
         | 
| 415 | 
            +
             | 
| 416 | 
            +
            # initialize the enhancer, on the cpu
         | 
| 417 | 
            +
            DEVICE_CPU = torch.device("cpu")
         | 
| 418 | 
            +
            DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
         | 
| 419 | 
            +
            enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
            device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 422 | 
            +
            enhancer.to(device=DEVICE, dtype=DTYPE)
         | 
| 423 |  | 
| 424 | 
             
            # logging
         | 
| 425 |  | 
|  | |
| 434 |  | 
| 435 | 
             
            # constant data
         | 
| 436 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 437 | 
             
            base = "black-forest-labs/FLUX.1-schnell"
         | 
| 438 | 
             
            pegasus_name = "google/pegasus-xsum"
         | 
| 439 |  | 
| 440 | 
             
            # precision data
         | 
| 441 |  | 
| 442 | 
             
            seq=512
         | 
| 443 | 
            +
            width=1024
         | 
| 444 | 
            +
            height=1024
         | 
| 445 | 
             
            image_steps=8
         | 
| 446 | 
             
            img_accu=0
         | 
| 447 |  | 
|  | |
| 511 |  | 
| 512 | 
             
            # functionality
         | 
| 513 |  | 
| 514 | 
            +
            @spaces.GPU(duration=180)
         | 
| 515 | 
            +
            def upscaler(
         | 
| 516 | 
            +
                input_image: Image.Image,
         | 
| 517 | 
            +
                prompt: str = "masterpiece, best quality, highres",
         | 
| 518 | 
            +
                negative_prompt: str = "worst quality, low quality, normal quality",
         | 
| 519 | 
            +
                seed: int = 42,
         | 
| 520 | 
            +
                upscale_factor: int = 8,
         | 
| 521 | 
            +
                controlnet_scale: float = 0.6,
         | 
| 522 | 
            +
                controlnet_decay: float = 1.0,
         | 
| 523 | 
            +
                condition_scale: int = 6,
         | 
| 524 | 
            +
                tile_width: int = 112,
         | 
| 525 | 
            +
                tile_height: int = 144,
         | 
| 526 | 
            +
                denoise_strength: float = 0.35,
         | 
| 527 | 
            +
                num_inference_steps: int = 18,
         | 
| 528 | 
            +
                solver: str = "DDIM",
         | 
| 529 | 
            +
            ) -> Image.Image:
         | 
| 530 | 
            +
                manual_seed(seed)
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                solver_type: type[Solver] = getattr(solvers, solver)
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                enhanced_image = enhancer.upscale(
         | 
| 535 | 
            +
                    image=input_image,
         | 
| 536 | 
            +
                    prompt=prompt,
         | 
| 537 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 538 | 
            +
                    upscale_factor=upscale_factor,
         | 
| 539 | 
            +
                    controlnet_scale=controlnet_scale,
         | 
| 540 | 
            +
                    controlnet_scale_decay=controlnet_decay,
         | 
| 541 | 
            +
                    condition_scale=condition_scale,
         | 
| 542 | 
            +
                    tile_size=(tile_height, tile_width),
         | 
| 543 | 
            +
                    denoise_strength=denoise_strength,
         | 
| 544 | 
            +
                    num_inference_steps=num_inference_steps,
         | 
| 545 | 
            +
                    loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
         | 
| 546 | 
            +
                    solver_type=solver_type,
         | 
| 547 | 
            +
                )
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                return enhanced_image
         | 
| 550 | 
            +
             | 
| 551 | 
            +
            @spaces.GPU(duration=180)
         | 
| 552 | 
             
            def summarize_text(
         | 
| 553 | 
             
                text, max_length=30, num_beams=16, early_stopping=True, 
         | 
| 554 | 
             
                pegasus_tokenizer = PegasusTokenizerFast.from_pretrained("google/pegasus-xsum"),
         | 
|  | |
| 565 | 
             
                characters = str(ascii_letters + digits)
         | 
| 566 | 
             
                return ''.join(random.choice(characters) for _ in range(length))
         | 
| 567 |  | 
| 568 | 
            +
            @spaces.GPU(duration=180)
         | 
| 569 | 
             
            def pipe_generate(p1,p2):
         | 
| 570 | 
             
                return image_pipe(
         | 
| 571 | 
             
                        prompt=p1,
         | 
|  | |
| 587 | 
             
                pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip()
         | 
| 588 | 
             
                pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", lyrics)).lower().strip()
         | 
| 589 | 
             
                pos_lyrics_sum = summarize_text(pos_lyrics)
         | 
| 590 | 
            +
                neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry Low-Quality Worst-Quality Low-Resolution Painted"
         | 
| 591 | 
            +
                pos = f'Realistic Vivid Genuine Reasonable Detailed 4K { pos_genre } GENRE { pos_song }: "{ pos_lyrics_sum }"'
         | 
| 592 |  | 
| 593 | 
             
                print(f"""
         | 
| 594 | 
             
                    Positive: {pos}
         | 
|  | |
| 601 | 
             
                draw = ImageDraw.Draw(img)
         | 
| 602 |  | 
| 603 | 
             
                rows = 1
         | 
| 604 | 
            +
                labels_distance = math.ceil(1 / 3)
         | 
| 605 |  | 
| 606 | 
             
                textheight=min(math.ceil( width / 10 ), math.ceil( height / 5 ))
         | 
| 607 | 
             
                font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
         | 
| 608 | 
             
                textwidth = draw.textlength(pos_song,font)
         | 
| 609 | 
             
                x = math.ceil((width - textwidth) / 2)
         | 
| 610 | 
            +
                y = height - math.ceil(textheight * rows / 2)
         | 
| 611 | 
            +
                y = y - math.ceil(y / labels_distance)
         | 
| 612 | 
            +
                draw.text((x, y), pos_song, (255,255,255), font=font, spacing=2, stroke_width=4, stroke_fill=(0,0,0))
         | 
| 613 |  | 
| 614 | 
             
                textheight=min(math.ceil( width / 12 ), math.ceil( height / 6 ))
         | 
| 615 | 
             
                font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
         | 
| 616 | 
             
                textwidth = draw.textlength(pos_artist,font)
         | 
| 617 | 
             
                x = math.ceil((width - textwidth) / 2)
         | 
| 618 | 
            +
                y = height - math.ceil(textheight * rows / 2)
         | 
| 619 | 
            +
                y = y + math.ceil(y / labels_distance)
         | 
| 620 | 
            +
                draw.text((x, y), pos_artist, (0,0,0), font=font, spacing=6, stroke_width=8, stroke_fill=(255,255,255))
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                enhanced_img = upscaler(img)
         | 
| 623 |  | 
| 624 | 
             
                name = generate_random_string(12) + ".png"
         | 
| 625 | 
            +
                enhanced_img.save(name)
         | 
| 626 | 
             
                return name
         | 
| 627 |  | 
| 628 | 
             
            # entry
         | 
|  | |
| 632 | 
             
                    gr.Markdown(f"""
         | 
| 633 | 
             
                        # Song Cover Image Generator
         | 
| 634 | 
             
                    """)
         | 
| 635 | 
            +
                    with gr.Column():
         | 
| 636 | 
            +
                        with gr.Row():
         | 
| 637 | 
             
                            artist = gr.Textbox(
         | 
| 638 | 
             
                                placeholder="Artist name",
         | 
| 639 | 
             
                                container=False,
         | 
| 640 | 
             
                                max_lines=1
         | 
| 641 | 
             
                            )
         | 
|  | |
| 642 | 
             
                            song = gr.Textbox(
         | 
| 643 | 
             
                                placeholder="Song name",
         | 
| 644 | 
             
                                container=False,
         | 
| 645 | 
             
                                max_lines=1
         | 
| 646 | 
             
                            )
         | 
| 647 | 
            +
                        genre = gr.Textbox(
         | 
|  | |
| 648 | 
             
                                placeholder="Genre",
         | 
| 649 | 
             
                                container=False,
         | 
| 650 | 
             
                                max_lines=1
         | 
| 651 | 
            +
                        )
         | 
|  | |
| 652 | 
             
                        lyrics = gr.Textbox(
         | 
| 653 | 
             
                            placeholder="Lyrics (English)",
         | 
| 654 | 
             
                            container=False,
         | 
| 655 | 
             
                            max_lines=1
         | 
| 656 | 
             
                        )
         | 
| 657 | 
            +
                    with gr.Column():
         | 
|  | |
|  | |
| 658 | 
             
                        cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False)
         | 
| 659 |  | 
| 660 | 
            +
                    run = gr.Button("Generate",elem_classes="btn")
         | 
| 661 | 
            +
             | 
| 662 | 
             
                    run.click(
         | 
| 663 | 
             
                        fn=handle_generate,
         | 
| 664 | 
             
                        inputs=[artist,song,genre,lyrics],
         | 
|  | |
| 666 | 
             
                    )
         | 
| 667 |  | 
| 668 | 
             
                demo.queue().launch()
         | 
|  | |
|  | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,11 +1,13 @@ | |
| 1 | 
             
            lxml
         | 
| 2 | 
            -
            pillow
         | 
|  | |
|  | |
| 3 | 
             
            opencv-python
         | 
| 4 | 
             
            gradio==5.12.0
         | 
| 5 | 
             
            accelerate
         | 
| 6 | 
             
            safetensors
         | 
| 7 | 
             
            huggingface-hub
         | 
| 8 | 
            -
            numpy
         | 
| 9 | 
             
            torch
         | 
| 10 | 
             
            torchaudio
         | 
| 11 | 
             
            torchvision
         | 
|  | |
| 1 | 
             
            lxml
         | 
| 2 | 
            +
            pillow>=10.4.0
         | 
| 3 | 
            +
            git+https://github.com/finegrain-ai/refiners
         | 
| 4 | 
            +
            pillow-heif>=0.18.0
         | 
| 5 | 
             
            opencv-python
         | 
| 6 | 
             
            gradio==5.12.0
         | 
| 7 | 
             
            accelerate
         | 
| 8 | 
             
            safetensors
         | 
| 9 | 
             
            huggingface-hub
         | 
| 10 | 
            +
            numpy<2.0.0
         | 
| 11 | 
             
            torch
         | 
| 12 | 
             
            torchaudio
         | 
| 13 | 
             
            torchvision
         | 
 
			
