Spaces:
Sleeping
Sleeping
Yaron Koresh
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,7 @@ import warnings
|
|
| 16 |
#import spaces
|
| 17 |
import torch
|
| 18 |
import gradio as gr
|
| 19 |
-
from numpy import array
|
| 20 |
from lxml.html import fromstring
|
| 21 |
#from transformers import pipeline
|
| 22 |
#from diffusers.pipelines.flux import FluxPipeline
|
|
@@ -30,6 +30,9 @@ from diffusers import DiffusionPipeline, AnimateDiffPipeline, MotionAdapter, Eul
|
|
| 30 |
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
|
| 31 |
from numba.cuda import jit as gpu, grid
|
| 32 |
from numba.types import unicode_type as string
|
|
|
|
|
|
|
|
|
|
| 33 |
# logging
|
| 34 |
|
| 35 |
warnings.filterwarnings("ignore")
|
|
@@ -46,11 +49,13 @@ formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(me
|
|
| 46 |
handler2.setFormatter(formatter)
|
| 47 |
root.addHandler(handler2)
|
| 48 |
|
| 49 |
-
# data
|
| 50 |
|
| 51 |
-
|
| 52 |
-
inp=[]
|
| 53 |
last_motion=array([""])
|
|
|
|
|
|
|
|
|
|
| 54 |
dtype = torch.float16
|
| 55 |
device = "cuda"
|
| 56 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
|
@@ -61,6 +66,8 @@ vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtyp
|
|
| 61 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
| 62 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
fast=True
|
| 65 |
fps=10
|
| 66 |
time=1
|
|
@@ -69,6 +76,8 @@ height=768
|
|
| 69 |
step=40
|
| 70 |
accu=10
|
| 71 |
|
|
|
|
|
|
|
| 72 |
css="""
|
| 73 |
input, input::placeholder {
|
| 74 |
text-align: center !important;
|
|
@@ -162,53 +171,46 @@ def generate_random_string(length):
|
|
| 162 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 163 |
|
| 164 |
@gpu(void())
|
| 165 |
-
def calc():
|
| 166 |
-
global
|
| 167 |
-
global out
|
| 168 |
global last_motion
|
| 169 |
|
| 170 |
x = grid(1)
|
| 171 |
|
| 172 |
-
if last_motion[0] !=
|
| 173 |
pipe.unload_lora_weights()
|
| 174 |
if inp[3] != "":
|
| 175 |
-
pipe.load_lora_weights(
|
| 176 |
pipe.fuse_lora()
|
| 177 |
-
pipe.set_adapters(
|
| 178 |
-
last_motion[0] =
|
| 179 |
|
| 180 |
pipe.to(device,dtype)
|
| 181 |
|
| 182 |
-
if
|
| 183 |
-
|
| 184 |
-
prompt=
|
| 185 |
height=height,
|
| 186 |
width=width,
|
| 187 |
-
ip_adapter_image=
|
| 188 |
num_inference_steps=step,
|
| 189 |
guidance_scale=accu,
|
| 190 |
num_frames=(fps*time)
|
| 191 |
)
|
| 192 |
|
| 193 |
-
|
| 194 |
-
prompt=
|
| 195 |
-
negative_prompt=
|
| 196 |
height=height,
|
| 197 |
width=width,
|
| 198 |
-
ip_adapter_image=
|
| 199 |
num_inference_steps=step,
|
| 200 |
guidance_scale=accu,
|
| 201 |
num_frames=(fps*time)
|
| 202 |
)
|
| 203 |
|
| 204 |
-
def handle(*
|
| 205 |
-
|
| 206 |
-
global out
|
| 207 |
-
|
| 208 |
-
inp = args
|
| 209 |
-
|
| 210 |
-
out = array([],dtype=string)
|
| 211 |
-
|
| 212 |
inp[1] = translate(inp[1],"english")
|
| 213 |
inp[2] = translate(inp[2],"english")
|
| 214 |
|
|
@@ -225,20 +227,24 @@ def handle(*args):
|
|
| 225 |
|
| 226 |
ln = len(result)
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
for i in range(ln):
|
| 231 |
-
name = generate_random_string
|
| 232 |
-
export_to_gif(
|
| 233 |
-
|
| 234 |
|
| 235 |
-
return
|
| 236 |
|
| 237 |
def ui():
|
| 238 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 239 |
with gr.Column(elem_id="col-container"):
|
| 240 |
gr.Markdown(f"""
|
| 241 |
-
# MULTI-LANGUAGE
|
| 242 |
""")
|
| 243 |
with gr.Row():
|
| 244 |
global img
|
|
|
|
| 16 |
#import spaces
|
| 17 |
import torch
|
| 18 |
import gradio as gr
|
| 19 |
+
from numpy import asarray as array
|
| 20 |
from lxml.html import fromstring
|
| 21 |
#from transformers import pipeline
|
| 22 |
#from diffusers.pipelines.flux import FluxPipeline
|
|
|
|
| 30 |
from numba import cuda, njit as cpu, void, int64 as int, float64 as float, boolean as bool
|
| 31 |
from numba.cuda import jit as gpu, grid
|
| 32 |
from numba.types import unicode_type as string
|
| 33 |
+
from PIL.Image import fromarray as array2image
|
| 34 |
+
import numpy as np
|
| 35 |
+
|
| 36 |
# logging
|
| 37 |
|
| 38 |
warnings.filterwarnings("ignore")
|
|
|
|
| 49 |
handler2.setFormatter(formatter)
|
| 50 |
root.addHandler(handler2)
|
| 51 |
|
| 52 |
+
# output data
|
| 53 |
|
| 54 |
+
out_pipe=array([""])
|
|
|
|
| 55 |
last_motion=array([""])
|
| 56 |
+
|
| 57 |
+
# constant data
|
| 58 |
+
|
| 59 |
dtype = torch.float16
|
| 60 |
device = "cuda"
|
| 61 |
#repo = "ByteDance/AnimateDiff-Lightning"
|
|
|
|
| 66 |
#unet = UNet2DConditionModel.from_config("emilianJR/epiCRealism",subfolder="unet").to(device, dtype).load_state_dict(load_file(hf_hub_download("emilianJR/epiCRealism", "unet/diffusion_pytorch_model.safetensors"), device=device), strict=False)
|
| 67 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=dtype, device=device)
|
| 68 |
|
| 69 |
+
# precision data
|
| 70 |
+
|
| 71 |
fast=True
|
| 72 |
fps=10
|
| 73 |
time=1
|
|
|
|
| 76 |
step=40
|
| 77 |
accu=10
|
| 78 |
|
| 79 |
+
# ui data
|
| 80 |
+
|
| 81 |
css="""
|
| 82 |
input, input::placeholder {
|
| 83 |
text-align: center !important;
|
|
|
|
| 171 |
return ''.join(random.choice(characters) for _ in range(length))
|
| 172 |
|
| 173 |
@gpu(void())
|
| 174 |
+
def calc(img,p1,p2,motion):
|
| 175 |
+
global out_pipe
|
|
|
|
| 176 |
global last_motion
|
| 177 |
|
| 178 |
x = grid(1)
|
| 179 |
|
| 180 |
+
if last_motion[0] != motion:
|
| 181 |
pipe.unload_lora_weights()
|
| 182 |
if inp[3] != "":
|
| 183 |
+
pipe.load_lora_weights(motion, adapter_name="motion")
|
| 184 |
pipe.fuse_lora()
|
| 185 |
+
pipe.set_adapters("motion", [0.7])
|
| 186 |
+
last_motion[0] = motion
|
| 187 |
|
| 188 |
pipe.to(device,dtype)
|
| 189 |
|
| 190 |
+
if p2=="":
|
| 191 |
+
out_pipe[x] = pipe(
|
| 192 |
+
prompt=p1,
|
| 193 |
height=height,
|
| 194 |
width=width,
|
| 195 |
+
ip_adapter_image=array2image(img).convert("RGB").resize((width,height)),
|
| 196 |
num_inference_steps=step,
|
| 197 |
guidance_scale=accu,
|
| 198 |
num_frames=(fps*time)
|
| 199 |
)
|
| 200 |
|
| 201 |
+
out_pipe[x] = pipe(
|
| 202 |
+
prompt=p1,
|
| 203 |
+
negative_prompt=p2,
|
| 204 |
height=height,
|
| 205 |
width=width,
|
| 206 |
+
ip_adapter_image=array2image(img).convert("RGB").resize((width,height)),
|
| 207 |
num_inference_steps=step,
|
| 208 |
guidance_scale=accu,
|
| 209 |
num_frames=(fps*time)
|
| 210 |
)
|
| 211 |
|
| 212 |
+
def handle(*inp):
|
| 213 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
inp[1] = translate(inp[1],"english")
|
| 215 |
inp[2] = translate(inp[2],"english")
|
| 216 |
|
|
|
|
| 227 |
|
| 228 |
ln = len(result)
|
| 229 |
|
| 230 |
+
inp[0] = array(inp[0])
|
| 231 |
+
inp[1] = array(inp[1])
|
| 232 |
+
inp[2] = array(inp[2])
|
| 233 |
+
inp[3] = array(inp[3])
|
| 234 |
+
calc[ln,32](*inp)
|
| 235 |
|
| 236 |
for i in range(ln):
|
| 237 |
+
name = generate_random_string(12)+".png"
|
| 238 |
+
export_to_gif(out_pipe[i].frames[0],name,fps=fps)
|
| 239 |
+
out_pipe[i] = name
|
| 240 |
|
| 241 |
+
return out_pipe
|
| 242 |
|
| 243 |
def ui():
|
| 244 |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
|
| 245 |
with gr.Column(elem_id="col-container"):
|
| 246 |
gr.Markdown(f"""
|
| 247 |
+
# MULTI-LANGUAGE GIF CREATOR
|
| 248 |
""")
|
| 249 |
with gr.Row():
|
| 250 |
global img
|