import os import re import spaces import random import string import torch import requests import gradio as gr import numpy as np from lxml.html import fromstring from pathos.threading import ThreadPool as Pool from diffusers import MotionAdapter, EulerDiscreteScheduler from diffusers.pipelines.flux import FluxPipeline from diffusers.utils import export_to_gif from huggingface_hub import hf_hub_download from safetensors.torch import load_file device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.bfloat16 step = 8 repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" #base = "emilianJR/epiCRealism" base = "black-forest-labs/FLUX.1-dev" adapter = MotionAdapter().to(device, dtype) adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device)) pipe = FluxPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype, token=os.getenv("hf_token")).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' print(url) resp = requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ) content = resp.content html = fromstring(content) translated = text try: src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() if trgt_lang == lang: translated = trgt_text except: print(f'Translation Warning: Failed To Translate!') ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(duration=120) def Piper(_do): return pipe( _do, height=256, width=768, num_inference_steps=step, guidance_scale=7 ) def infer(prompt_en): name = generate_random_string(12)+".png" if prompt_en == "": _do = 'filmed scene' else: _do = f'filmed { prompt_en } scene' export_to_gif(Piper(_do).frames[0],name) return name css=""" input, input::placeholder { text-align: center !important; } *, *::placeholder { direction: ltr !important; font-family: Suez One !important; } h1,h2,h3,h4,h5,h6,span,p,pre { width: 100% !important; text-align: center !important; display: block !important; } footer { display: none !important; } #col-container { margin: 0 auto !important; max-width: 15cm !important; } .image-container { aspect-ratio: 768 / 256 !important; } .dropdown-arrow { display: none !important; } *:has(.btn), .btn { width: 100% !important; margin: 0 auto !important; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","27") } """ with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: result = [] with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE GIF GENERATOR AI """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="WHAT TO CREATE", container=False, max_lines=1 ) with gr.Row(): run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) with gr.Row(): result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) def _ret(idx,p1): print(f'Starting {idx}: {p1}') v = infer(p1) print(f'Finished {idx}: {v}') return v def _rets(p1): p1_en = translate(p1,"english") ln = len(result) idxs = list(range(ln)) p1s = [p1_en for _ in idxs] return list(Pool(ln).imap( _ret, idxs, p1s )) run_button.click(fn=_rets,inputs=prompt,outputs=result) demo.queue().launch()