# built-in from inspect import signature import os import subprocess import logging import re import random from string import ascii_letters, digits, punctuation import requests import sys import warnings import time import asyncio from functools import partial # external import spaces import torch import gradio as gr from lxml.html import fromstring from huggingface_hub import hf_hub_download from safetensors.torch import load_file, save_file from diffusers import FluxPipeline from PIL import Image, ImageDraw, ImageFont # logging warnings.filterwarnings("ignore") root = logging.getLogger() root.setLevel(logging.WARN) handler = logging.StreamHandler(sys.stderr) handler.setLevel(logging.WARN) formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n') handler.setFormatter(formatter) root.addHandler(handler) # constant data if torch.cuda.is_available(): device = "cuda" else: device = "cpu" base = "black-forest-labs/FLUX.1-schnell" # precision data seq=512 width=4320 height=4320 image_steps=8 img_accu=0 # ui data css="".join([""" input, input::placeholder { text-align: center !important; } *, *::placeholder { font-family: Suez One !important; } h1,h2,h3,h4,h5,h6 { width: 100%; text-align: center; } footer { display: none !important; } #col-container { margin: 0 auto; } .image-container { aspect-ratio: """,str(width),"/",str(height),""" !important; } .dropdown-arrow { display: none !important; } *:has(>.btn) { display: flex; justify-content: space-evenly; align-items: center; } .btn { display: flex; } """]) js=""" function custom(){ document.querySelector("div#prompt input").addEventListener("keydown",function(e){ e.target.setAttribute("last_value",e.target.value); }); document.querySelector("div#prompt input").addEventListener("input",function(e){ if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ e.target.value = e.target.getAttribute("last_value"); e.target.removeAttribute("last_value"); } }); document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){ e.target.setAttribute("last_value",e.target.value); }); document.querySelector("div#prompt2 input").addEventListener("input",function(e){ if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){ e.target.value = e.target.getAttribute("last_value"); e.target.removeAttribute("last_value"); } }); } """ # torch pipes image_pipe = FluxPipeline.from_pretrained(base, torch_dtype=torch.bfloat16).to(device) image_pipe.enable_model_cpu_offload() # functionality def generate_random_string(length): characters = str(ascii_letters + digits) return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU() def pipe_generate(p1,p2): return image_pipe( prompt=p1, negative_prompt=p2, height=height, width=width, guidance_scale=img_accu, num_images_per_prompt=1, num_inference_steps=image_steps, max_sequence_length=seq, generator=torch.Generator(device).manual_seed(int(str(random.random()).split(".")[1])) ).images[0] def handle_generate(artist,song,genre,lyrics): pos_artist = re.sub("([ \t\n]){1,}", " ", artist).strip() pos_song = re.sub("([ \t\n]){1,}", " ", song).strip() pos_song = ' '.join(word[0].upper() + word[1:] for word in pos_song.split()) pos_genre = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).upper().strip() pos_lyrics = re.sub(f'[{punctuation}]', '', re.sub("([ \t\n]){1,}", " ", genre)).lower().strip() neg = f"Textual Labeled Distorted Discontinuous Ugly Blurry" pos = f'Realistic Natural Genuine Reasonable Detailed { pos_genre } GENRE SONG COVER FOR { pos_song }: "{ pos_lyrics }"' print(f""" Positive: {inp[1]} Negative: {inp[2]} """) img = pipe_generate(pos,neg) draw = ImageDraw.Draw(img) rows = 1 labes_distance = 1 // 3 textheight=min(( width // 10 ), ( height // 5 )) font = ImageFont.truetype(r"Alef-Bold.ttf", textheight) textwidth = draw.textlength(pos_song,font) x = (width - textwidth) // 2 y = (height - (textheight * rows // 2)) // 2 y = y - (y // labes_distance) draw.text((x, y), pos_song, (255,255,255), font=font) textheight=min(( width // 12 ), ( height // 6 )) font = ImageFont.truetype(r"Alef-Bold.ttf", textheight) textwidth = draw.textlength(pos_artist,font) x = (width - textwidth) // 2 y = (height - (textheight * rows // 2)) // 2 y = y + (y // labes_distance) draw.text((x, y), pos_artist, (255,255,255), font=font) name = generate_random_string(12) + ".png" img.save(name) return name # entry if __name__ == "__main__": with gr.Blocks(theme=gr.themes.Citrus(),css=css,js=js) as demo: gr.Markdown(f""" # Song Cover Image Generator """) with gr.Row(): with gr.Column(): artist = gr.Textbox( placeholder="Artist name", container=False, max_lines=1 ) with gr.Column(): song = gr.Textbox( placeholder="Song name", container=False, max_lines=1 ) with gr.Column(): genre = gr.Textbox( placeholder="Genre", container=False, max_lines=1 ) with gr.Row(): lyrics = gr.Textbox( placeholder="Lyrics (English)", container=False, max_lines=1 ) with gr.Row(): run = gr.Button("Generate",elem_classes="btn") run.click( fn=handle_generate, inputs=[artist,song,genre,lyrics], outputs=[cover] ) with gr.Row(): cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='filepath', show_share_button=False) demo.queue().launch() # end