import os import re import spaces import random import string import torch import requests import gradio as gr import numpy as np from lxml.html import fromstring from transformers import pipeline from torch.multiprocessing import Pool, Process, set_start_method #from pathos.multiprocessing import ProcessPool as Pool #from pathos.threading import ThreadPool as Pool #from diffusers.pipelines.flux import FluxPipeline #from diffusers.utils import export_to_gif #from huggingface_hub import hf_hub_download #from safetensors.torch import load_file from diffusers import DiffusionPipeline, StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image #import jax #import jax.numpy as jnp import torch._dynamo #set_start_method("spawn", force=True) torch._dynamo.config.suppress_errors = True #pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=os.getenv("hf_token")).to(device) #pipe2 = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to(device) #pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True) PIPE = None def pipe_t2i(): global PIPE if PIPE is None: PIPE = pipeline("text-to-image", model="black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", tokenizer="black-forest-labs/FLUX.1-schnell", device=-1, token=os.getenv("hf_token")) return PIPE def pipe_i2i(): global PIPE if PIPE is None: PIPE = pipeline("image-to-image", model="stabilityai/stable-diffusion-xl-refiner-1.0", tokenizer="stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, device=-1, variant="fp16", use_safetensors=True) PIPE.unet = torch.compile(PIPE.unet, mode="reduce-overhead", fullgraph=True) return PIPE def translate(text,lang): if text == None or lang == None: return "" text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() if text == "" or lang == "": return "" if len(text) > 38: raise Exception("Translation Error: Too long text!") user_agents = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' ] padded_chars = re.sub("[(^\-)(\-$)]","",text.replace("","-").replace("- -"," ")).strip() query_text = f'Please translate {padded_chars}, into {lang}' url = f'https://www.google.com/search?q={query_text}' resp = requests.get( url = url, headers = { 'User-Agent': random.choice(user_agents) } ) content = resp.content html = fromstring(content) translated = text try: src_lang = html.xpath('//*[@class="source-language"]')[0].text_content().lower().strip() trgt_lang = html.xpath('//*[@class="target-language"]')[0].text_content().lower().strip() src_text = html.xpath('//*[@id="tw-source-text"]/*')[0].text_content().lower().strip() trgt_text = html.xpath('//*[@id="tw-target-text"]/*')[0].text_content().lower().strip() if trgt_lang == lang: translated = trgt_text except: print(f'Translation Warning: Failed To Translate!') ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() print(ret) return ret def generate_random_string(length): characters = string.ascii_letters + string.digits return ''.join(random.choice(characters) for _ in range(length)) @spaces.GPU(duration=35) def Piper(_do): pipe = pipe_t2i() try: retu = pipe( _do, height=512, width=512, num_inference_steps=4, max_sequence_length=256, guidance_scale=0 ) return retu except Exception as e: print(e) return None @spaces.GPU(duration=35) def Piper2(img,posi,neg): pipe = pipe_i2i() try: retu = pipe2( prompt=posi, negative_prompt=neg, image=img ) return retu except Exception as e: print(e) return None @spaces.GPU(duration=35) def tok(txt): toks = pipe.tokenizer(txt)['input_ids'] print(toks) return toks def infer(p1,p2): name = generate_random_string(12)+".png" _do = ['beautiful', 'playful', 'photographed', 'realistic', 'dynamic poze', 'deep field', 'reasonable coloring', 'rough texture', 'best quality', 'focused'] if p1 != "": _do.append(f'{p1}') if p2 != "": _dont = f'{p2} where in {p1}' neg = _dont else: neg = None output = Piper('A '+" ".join(_do)) if output == None: return None else: output.images[0].save(name) if neg == None: return name img = load_image(name).convert("RGB") output2 = Piper2(img,p1,neg) if output2 == None: return None else: output2.images[0].save("_"+name) return "_"+name css=""" input, input::placeholder { text-align: center !important; } *, *::placeholder { direction: ltr !important; font-family: Suez One !important; } h1,h2,h3,h4,h5,h6,span,p,pre { width: 100% !important; text-align: center !important; display: block !important; } footer { display: none !important; } #col-container { margin: 0 auto !important; max-width: 15cm !important; } .image-container { aspect-ratio: 448 / 448 !important; } .dropdown-arrow { display: none !important; } *:has(.btn), .btn { width: 100% !important; margin: 0 auto !important; } """ js=""" function custom(){ document.querySelector("div#prompt input").setAttribute("maxlength","38") document.querySelector("div#prompt2 input").setAttribute("maxlength","38") } """ with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: result = [] with gr.Column(elem_id="col-container"): gr.Markdown(f""" # MULTI-LANGUAGE IMAGE GENERATOR """) with gr.Row(): prompt = gr.Textbox( elem_id="prompt", placeholder="INCLUDE", container=False, max_lines=1 ) with gr.Row(): prompt2 = gr.Textbox( elem_id="prompt2", placeholder="EXCLUDE", container=False, max_lines=1 ) with gr.Row(): run_button = gr.Button("START",elem_classes="btn",scale=0) with gr.Row(): result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) result.append(gr.Image(interactive=False,elem_classes="image-container", label="Result", show_label=False, type='filepath', show_share_button=False)) def _ret(p): print(f'Starting!') v = infer(p["a"],p["b"]) print(f'Finished!') return v def _rets(p1,p2): p1_en = translate(p1,"english") p2_en = translate(p2,"english") p = {"a":p1_en,"b":p2_en} ln = len(result) rng = range(ln) p_arr = [p for _ in rng] pool = Pool(processes=ln) lst = list( pool.imap( _ret, p_arr ) ) pool.clear() return lst #return list( _ret(p1_en,p2_en) ) run_button.click(fn=_rets,inputs=[prompt,prompt2],outputs=result) demo.queue().launch()