File size: 6,115 Bytes
b4f9b4b
f1052d9
a67a3c8
b4f9b4b
210ed13
95af88e
210ed13
b1328e8
ea26522
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
ba57615
76b48d0
62c5b0c
f8fb4da
a65820a
210ed13
f8fb4da
210ed13
 
9d19d52
210ed13
 
f043e56
210ed13
 
3ed5fef
1d16cc9
 
a597e6b
 
 
 
 
 
 
 
 
84291d5
 
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
db97e79
84291d5
 
83d3e5a
f2fa35d
 
 
 
 
 
83d3e5a
 
 
b4f9b4b
 
 
 
 
f2fa35d
7300f25
1f747ea
7300f25
f2fa35d
 
7300f25
77c5e2a
ba57615
452be41
 
f3e4728
b4f9b4b
db8d483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c5e2a
db8d483
f3e4728
 
77c5e2a
 
7300f25
b4f9b4b
210ed13
 
 
 
db8d483
b9d2cc5
 
 
210ed13
 
 
 
 
 
 
 
4003d15
210ed13
 
62c5b0c
 
210ed13
cc8258d
 
f3e4728
 
 
 
 
 
db8d483
cc8258d
 
f3e4728
 
 
 
 
 
db8d483
cc8258d
 
f3e4728
 
 
 
 
 
db8d483
f3e4728
 
 
 
 
db8d483
f3e4728
 
db8d483
cc8258d
 
db8d483
b9d2cc5
210ed13
 
f3e4728
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusion3Pipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(4)
pool.__enter__()

#model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)
else: 
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)

def translate(text,lang):
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    url = f'https://www.google.com/search?q=translate to {lang}: {text}'
    print(url)
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    print(resp)
    content = resp.content
    html = fromstring(content)
    rslt = html.xpath('//pre[@aria-label="Translated text"]/span')
    translated = text
    try:
        t = rslt[0].text.strip()
        translated = t
    except:
        print(f'"{text}" is already in {lang}!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(duration=120)
def Piper(_do, _dont):
    return pipe(
        _do,
        height=480,
        width=480,
        negative_prompt=_dont,
        num_inference_steps=400,
        guidance_scale=10
    )

def infer(prompt1,prompt2,prompt3,prompt4):
    name = generate_random_string(12)+".png"
    if prompt1 == None:
        prompt1 = "any"
    else:
        prompt1 = " and ".join([translate(v,"english").upper() for v in prompt1])
    
    if prompt2 == None:
        prompt2 = "any"
    else:
        prompt2 = " and ".join([translate(v,"english").upper() for v in prompt2])
    
    if prompt3 == None:
        prompt3 = "any"
    else:
        prompt3 = " and ".join([translate(v,"english").upper() for v in prompt3])
    
    if prompt4 == None:
        prompt4 = "none"
    else:
        prompt4 = " and ".join([translate(v,"english").upper() for v in prompt4])
        
    _do = f'Show an authentic {prompt3} scene, while focusing on the details, of {prompt1}, as the main elements, and, showing {prompt2} in the background.'
    _dont = f'ANY usage of {prompt4}...'
    print(_do)
    print(_dont)
    image = Piper(_do, _dont).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 13cm;
}
#image-container {
    aspect-ratio: 1 / 1;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(theme=gr.themes.Soft(),css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Column():
            with gr.Row():
                prompt1 = gr.Dropdown(
                    multiselect=True,
                    allow_custom_value=True,
                    max_choices=3,
                    label="Foreground Elements",
                    show_label=True,
                    container=True
                )
            with gr.Row():
                prompt2 = gr.Dropdown(
                    multiselect=True,
                    allow_custom_value=True,
                    max_choices=4,
                    label="Background Elements",
                    show_label=True,
                    container=True
                )
            with gr.Row():
                prompt3 = gr.Dropdown(
                    multiselect=True,
                    allow_custom_value=True,
                    max_choices=2,
                    label="Background Events",
                    show_label=True,
                    container=True
                )
            with gr.Row():
                prompt4 = gr.Dropdown(
                    multiselect=True,
                    allow_custom_value=True,
                    max_choices=5,
                    label="Forbidden Elements/Events",
                    show_label=True,
                    container=True
                )
            with gr.Row():
                run_button = gr.Button("Run")
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt1,prompt2,prompt3,prompt4],
        outputs = [result]
    )

demo.queue().launch()