File size: 49,921 Bytes
8ea4507
c87d615
8ea4507
8aa0947
8ea4507
 
477d1e3
89fc06b
 
 
 
7e2a8fb
8aa0947
2f7410c
4deddd3
e21a983
 
 
 
 
9c588a7
e21a983
 
 
fb14070
 
ce2ea41
5c223cd
8faa958
5c223cd
 
 
fb4e2c7
5c223cd
 
06d3f6e
d8abae0
e21a983
 
 
 
187f4bd
70bd56f
8aa0947
5c223cd
 
 
 
 
 
df91595
d4b458d
d4dcb05
 
 
e93bf67
 
8aa0947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c223cd
df91595
 
5c223cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d72ad
5c223cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3071c09
8172c90
6db6a8d
61c89cd
 
9d3a848
 
302bc3b
b32fdcf
302bc3b
9d3a848
 
 
 
6db6a8d
 
3071c09
552490f
6db6a8d
 
3071c09
8aa0947
 
562b4d5
6db6a8d
 
3b90fe5
147f1f5
552490f
 
 
 
 
 
 
 
 
 
 
 
 
284c10d
552490f
 
 
 
 
 
 
 
 
 
 
 
3b90fe5
7985d5f
552490f
 
fef1dcd
 
 
 
a5c674b
fef1dcd
 
 
 
fb4e2c7
fef1dcd
 
 
 
a5c674b
fef1dcd
 
 
 
552490f
 
 
688d8e9
e7348c9
c87d615
d4dcb05
3071c09
d4dcb05
8aa0947
 
 
d4dcb05
e7348c9
fb14070
98ac56e
5c223cd
 
3071c09
d4b23f6
8aa0947
3df19d6
5c223cd
 
 
 
 
 
8aa0947
5c223cd
 
df91595
 
 
d4dcb05
5c223cd
d4dcb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c223cd
d4dcb05
 
 
 
df91595
d4dcb05
 
 
5c223cd
fe177e5
723fc44
fe177e5
 
 
 
 
78cc42c
27d4615
1281fb4
 
 
 
89e3e87
d4dcb05
1281fb4
302c3d1
1281fb4
27d4615
 
 
1281fb4
2c85095
f89f832
f968442
 
8aa0947
1281fb4
 
 
 
56d4450
302c3d1
1281fb4
56d4450
 
 
1281fb4
 
8aa0947
56d4450
 
 
 
f968442
1281fb4
 
5cb26b4
fc523d1
a99276a
b4f9b4b
b8d8aa1
1f15540
446a991
89e3e87
446a991
89e3e87
446a991
89e3e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446a991
89e3e87
 
 
4afc319
43afd3e
f968442
89fc06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f968442
 
9368cf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89fc06b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43afd3e
 
 
 
89fc06b
43afd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78cc42c
43afd3e
 
 
 
 
 
 
8ab132a
43afd3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4dcb05
 
 
 
 
8aa0947
43afd3e
4c5f7a7
43afd3e
4c5f7a7
 
 
43afd3e
4c5f7a7
 
43afd3e
4c5f7a7
 
ee47803
4c5f7a7
 
 
 
d4b458d
78cc42c
bf9773d
dccc11d
10ce892
c2185df
df91595
bf621da
d4dcb05
b32fdcf
d4dcb05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fbc61c
d4dcb05
1fbc61c
 
 
 
 
 
 
 
d4dcb05
 
 
 
 
 
 
 
 
77e3da3
 
 
7320aa5
762a623
10ce892
762a623
908c611
10ce892
908c611
 
8ed5555
10ce892
5a6c863
10ce892
 
284c10d
28b96ba
79372e9
28b96ba
284c10d
28b96ba
10ce892
 
284c10d
28b96ba
79372e9
28b96ba
284c10d
10ce892
 
5a6c863
10ce892
 
5a6c863
 
10ce892
5a6c863
 
 
17a8d48
89e3e87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cf7c1e
 
bf621da
10ce892
7f44c6b
a1f152d
dccc11d
17a8d48
8f16386
dccc11d
 
89e3e87
 
 
 
 
 
a1f152d
77e3da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
"""
Modified parts included from these sources:
- https://github.com/nidhaloff/deep-translator
- https://huggingface.co/spaces/ostris/Flex.1-alpha
"""

import urllib
import requests
from bs4 import BeautifulSoup
from abc import ABC, abstractmethod
from pathlib import Path
from langdetect import detect as get_language
from typing import Any, Dict, List, Optional, Union
from collections import namedtuple
from inspect import signature
import os
import subprocess
import logging
import re
import random
from string import ascii_letters, digits, punctuation
import requests
import sys
import warnings
import time
import asyncio
import math
from pathlib import Path
from functools import partial
from dataclasses import dataclass
from typing import Any
import pillow_heif
import spaces
import numpy as np
import numpy.typing as npt
import torch
from torch import nn
import gradio as gr
from lxml.html import fromstring
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file, save_file
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, FluxPipeline, FlowMatchEulerDiscreteScheduler
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
from refiners.fluxion.utils import manual_seed
from refiners.foundationals.latent_diffusion import Solver, solvers
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
    MultiUpscaler,
    UpscalerCheckpoints,
)
from datetime import datetime

_HEIGHT_ = None
_WIDTH_ = None

working = False

model = T5ForConditionalGeneration.from_pretrained("t5-base")
tokenizer = T5Tokenizer.from_pretrained("t5-base")

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# FLUX pipeline function
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    # 3. Encode prompt
    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    # Handle guidance
    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    # 6. Denoising loop
    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]
        # Yield intermediate result
        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()

    # Final image using good_vae
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

def log(msg):
    print(f'{datetime.now().time()} {msg}')

Tile = tuple[int, int, Image.Image]
Tiles = list[tuple[int, int, list[Tile]]]

def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
    return nn.Sequential(
        nn.Conv2d(in_nc, out_nc, kernel_size=3, padding=1),
        nn.LeakyReLU(negative_slope=0.2, inplace=True),
    )

class ResidualDenseBlock_5C(nn.Module):
    """
    Residual Dense Block
    The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
    Modified options that can be used:
        - "Partial Convolution based Padding" arXiv:1811.11718
        - "Spectral normalization" arXiv:1802.05957
        - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
            {Rakotonirina} and A. {Rasoanaivo}
    """

    def __init__(self, nf: int = 64, gc: int = 32) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]

        self.conv1 = conv_block(nf, gc)
        self.conv2 = conv_block(nf + gc, gc)
        self.conv3 = conv_block(nf + 2 * gc, gc)
        self.conv4 = conv_block(nf + 3 * gc, gc)
        # Wrapped in Sequential because of key in state dict.
        self.conv5 = nn.Sequential(nn.Conv2d(nf + 4 * gc, nf, kernel_size=3, padding=1))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x1 = self.conv1(x)
        x2 = self.conv2(torch.cat((x, x1), 1))
        x3 = self.conv3(torch.cat((x, x1, x2), 1))
        x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5 * 0.2 + x


class RRDB(nn.Module):
    """
    Residual in Residual Dense Block
    (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
    """

    def __init__(self, nf: int) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        self.RDB1 = ResidualDenseBlock_5C(nf)
        self.RDB2 = ResidualDenseBlock_5C(nf)
        self.RDB3 = ResidualDenseBlock_5C(nf)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        out = self.RDB1(x)
        out = self.RDB2(out)
        out = self.RDB3(out)
        return out * 0.2 + x


class Upsample2x(nn.Module):
    """Upsample 2x."""

    def __init__(self) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return nn.functional.interpolate(x, scale_factor=2.0)  # type: ignore


class ShortcutBlock(nn.Module):
    """Elementwise sum the output of a submodule to its input"""

    def __init__(self, submodule: nn.Module) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        self.sub = submodule

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.sub(x)


class RRDBNet(nn.Module):
    def __init__(self, in_nc: int, out_nc: int, nf: int, nb: int) -> None:
        super().__init__()  # type: ignore[reportUnknownMemberType]
        assert in_nc % 4 != 0  # in_nc is 3

        self.model = nn.Sequential(
            nn.Conv2d(in_nc, nf, kernel_size=3, padding=1),
            ShortcutBlock(
                nn.Sequential(
                    *(RRDB(nf) for _ in range(nb)),
                    nn.Conv2d(nf, nf, kernel_size=3, padding=1),
                )
            ),
            Upsample2x(),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            Upsample2x(),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(nf, nf, kernel_size=3, padding=1),
            nn.LeakyReLU(negative_slope=0.2, inplace=True),
            nn.Conv2d(nf, out_nc, kernel_size=3, padding=1),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.model(x)


def infer_params(state_dict: dict[str, torch.Tensor]) -> tuple[int, int, int, int, int]:
    # this code is adapted from https://github.com/victorca25/iNNfer
    scale2x = 0
    scalemin = 6
    n_uplayer = 0
    out_nc = 0
    nb = 0

    for block in list(state_dict):
        parts = block.split(".")
        n_parts = len(parts)
        if n_parts == 5 and parts[2] == "sub":
            nb = int(parts[3])
        elif n_parts == 3:
            part_num = int(parts[1])
            if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
                scale2x += 1
            if part_num > n_uplayer:
                n_uplayer = part_num
                out_nc = state_dict[block].shape[0]
        assert "conv1x1" not in block  # no ESRGANPlus

    nf = state_dict["model.0.weight"].shape[0]
    in_nc = state_dict["model.0.weight"].shape[1]
    scale = 2**scale2x

    assert out_nc > 0
    assert nb > 0

    return in_nc, out_nc, nf, nb, scale  # 3, 3, 64, 23, 4

# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])

# adapted from https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
def split_grid(image: Image.Image, tile_w: int = 512, tile_h: int = 512, overlap: int = 64) -> Grid:
    w = image.width
    h = image.height

    non_overlap_width = tile_w - overlap
    non_overlap_height = tile_h - overlap

    cols = max(1, math.ceil((w - overlap) / non_overlap_width))
    rows = max(1, math.ceil((h - overlap) / non_overlap_height))

    dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
    dy = (h - tile_h) / (rows - 1) if rows > 1 else 0

    grid = Grid([], tile_w, tile_h, w, h, overlap)
    for row in range(rows):
        row_images: list[Tile] = []
        y1 = max(min(int(row * dy), h - tile_h), 0)
        y2 = min(y1 + tile_h, h)
        for col in range(cols):
            x1 = max(min(int(col * dx), w - tile_w), 0)
            x2 = min(x1 + tile_w, w)
            tile = image.crop((x1, y1, x2, y2))
            row_images.append((x1, tile_w, tile))
        grid.tiles.append((y1, tile_h, row_images))

    return grid


# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
def combine_grid(grid: Grid):
    def make_mask_image(r: npt.NDArray[np.float32]) -> Image.Image:
        r = r * 255 / grid.overlap
        return Image.fromarray(r.astype(np.uint8), "L")

    mask_w = make_mask_image(
        np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
    )
    mask_h = make_mask_image(
        np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
    )

    combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
    for y, h, row in grid.tiles:
        combined_row = Image.new("RGB", (grid.image_w, h))
        for x, w, tile in row:
            if x == 0:
                combined_row.paste(tile, (0, 0))
                continue

            combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
            combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))

        if y == 0:
            combined_image.paste(combined_row, (0, 0))
            continue

        combined_image.paste(
            combined_row.crop((0, 0, combined_row.width, grid.overlap)),
            (0, y),
            mask=mask_h,
        )
        combined_image.paste(
            combined_row.crop((0, grid.overlap, combined_row.width, h)),
            (0, y + grid.overlap),
        )

    return combined_image


class UpscalerESRGAN:
    def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
        self.model_path = model_path
        self.device = device
        self.model = self.load_model(model_path)
        self.to(device, dtype)

    def __call__(self, img: Image.Image) -> Image.Image:
        return self.upscale_without_tiling(img)

    def to(self, device: torch.device, dtype: torch.dtype):
        self.device = device
        self.dtype = dtype
        self.model.to(device=device, dtype=dtype)

    def load_model(self, path: Path) -> RRDBNet:
        filename = path
        state_dict: dict[str, torch.Tensor] = torch.load(filename, weights_only=True, map_location=self.device)  # type: ignore
        in_nc, out_nc, nf, nb, upscale = infer_params(state_dict)
        assert upscale == 4, "Only 4x upscaling is supported"
        model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb)
        model.load_state_dict(state_dict)
        model.eval()

        return model

    def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
        img_np = np.array(img)
        img_np = img_np[:, :, ::-1]
        img_np = np.ascontiguousarray(np.transpose(img_np, (2, 0, 1))) / 255
        img_t = torch.from_numpy(img_np).float()  # type: ignore
        img_t = img_t.unsqueeze(0).to(device=self.device, dtype=self.dtype)
        with torch.no_grad():
            output = self.model(img_t)
        output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
        output = 255.0 * np.moveaxis(output, 0, 2)
        output = output.astype(np.uint8)
        output = output[:, :, ::-1]
        return Image.fromarray(output, "RGB")

    # https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
    def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
        img = img.convert("RGB")
        grid = split_grid(img)
        newtiles: Tiles = []
        scale_factor: int = 1

        for y, h, row in grid.tiles:
            newrow: list[Tile] = []
            for tiledata in row:
                x, w, tile = tiledata
                output = self.upscale_without_tiling(tile)
                scale_factor = output.width // tile.width
                newrow.append((x * scale_factor, w * scale_factor, output))
            newtiles.append((y * scale_factor, h * scale_factor, newrow))

        newgrid = Grid(
            newtiles,
            grid.tile_w * scale_factor,
            grid.tile_h * scale_factor,
            grid.image_w * scale_factor,
            grid.image_h * scale_factor,
            grid.overlap * scale_factor,
        )
        output = combine_grid(newgrid)
        return output

@dataclass(kw_only=True)
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
    esrgan: Path

class ESRGANUpscaler(MultiUpscaler):
    def __init__(
        self,
        checkpoints: ESRGANUpscalerCheckpoints,
        device: torch.device,
        dtype: torch.dtype,
    ) -> None:
        super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
        self.esrgan = UpscalerESRGAN(checkpoints.esrgan, device=self.device, dtype=self.dtype)

    def to(self, device: torch.device, dtype: torch.dtype):
        self.esrgan.to(device=device, dtype=dtype)
        self.sd = self.sd.to(device=device, dtype=dtype)
        self.device = device
        self.dtype = dtype

    def pre_upscale(self, image: Image.Image, upscale_factor: float, **_: Any) -> Image.Image:
        image = self.esrgan.upscale_with_tiling(image)
        return super().pre_upscale(image=image, upscale_factor=upscale_factor / 4)

pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()

CHECKPOINTS = ESRGANUpscalerCheckpoints(
    unet=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.unet",
            filename="model.safetensors",
            revision="347d14c3c782c4959cc4d1bb1e336d19f7dda4d2",
        )
    ),
    clip_text_encoder=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.text_encoder",
            filename="model.safetensors",
            revision="744ad6a5c0437ec02ad826df9f6ede102bb27481",
        )
    ),
    lda=Path(
        hf_hub_download(
            repo_id="refiners/juggernaut.reborn.sd1_5.autoencoder",
            filename="model.safetensors",
            revision="3c1aae3fc3e03e4a2b7e0fa42b62ebb64f1a4c19",
        )
    ),
    controlnet_tile=Path(
        hf_hub_download(
            repo_id="refiners/controlnet.sd1_5.tile",
            filename="model.safetensors",
            revision="48ced6ff8bfa873a8976fa467c3629a240643387",
        )
    ),
    esrgan=Path(
        hf_hub_download(
            repo_id="philz1337x/upscaler",
            filename="4x-UltraSharp.pth",
            revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
        )
    ),
    negative_embedding=Path(
        hf_hub_download(
            repo_id="philz1337x/embeddings",
            filename="JuggernautNegative-neg.pt",
            revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
        )
    ),
    negative_embedding_key="string_to_param.*",
    loras={
        "more_details": Path(
            hf_hub_download(
                repo_id="philz1337x/loras",
                filename="more_details.safetensors",
                revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
            )
        ),
        "sdxl_render": Path(
            hf_hub_download(
                repo_id="philz1337x/loras",
                filename="SDXLrender_v2.0.safetensors",
                revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
            )
        )
    }
)

device = DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DTYPE = dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device="cpu", dtype=DTYPE)

# logging

warnings.filterwarnings("ignore")
root = logging.getLogger()
root.setLevel(logging.WARN)
handler = logging.StreamHandler(sys.stderr)
handler.setLevel(logging.WARN)
formatter = logging.Formatter('\n >>> [%(levelname)s] %(asctime)s %(name)s: %(message)s\n')
handler.setFormatter(formatter)
root.addHandler(handler)

# constant data

MAX_SEED = np.iinfo(np.int32).max

# precision data

seq=512
image_steps=25
img_accu=3.5

# ui data

css="".join(["""
input, textarea, input::placeholder, textarea::placeholder {
    text-align: center !important;
}
*, *::placeholder {
    font-family: Suez One !important;
}
h1,h2,h3,h4,h5,h6 {
    width: 100%;
    text-align: center;
}
footer {
    display: none !important;
}
.image-container {
    aspect-ratio: 1/1 !important;
}
.dropdown-arrow {
    display: none !important;
}
*:has(>.btn) {
    display: flex;
    justify-content: space-evenly;
    align-items: center;
}
.btn {
    display: flex;
}
"""])

js="""
function custom(){
    document.querySelector("div#prompt input").addEventListener("keydown",function(e){
        e.target.setAttribute("last_value",e.target.value);
    });
    document.querySelector("div#prompt input").addEventListener("input",function(e){
        if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
            e.target.value = e.target.getAttribute("last_value");
            e.target.removeAttribute("last_value");
        }
    });

    document.querySelector("div#prompt2 input").addEventListener("keydown",function(e){
        e.target.setAttribute("last_value",e.target.value);
    });
    document.querySelector("div#prompt2 input").addEventListener("input",function(e){
        if( e.target.value.toString().match(/[^ a-zA-Z,]|( |,){2,}/gsm) ){
            e.target.value = e.target.getAttribute("last_value");
            e.target.removeAttribute("last_value");
        }
    });
}
"""

# torch pipes

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
#good_vae = AutoencoderKL.from_pretrained("ostris/Flex.1-alpha", subfolder="vae", torch_dtype=dtype).to(device)
image_pipe = DiffusionPipeline.from_pretrained("ostris/Flex.1-alpha", torch_dtype=dtype, vae=taef1).to(device)
#image_pipe.enable_model_cpu_offload()

torch.cuda.empty_cache()

#image_pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(image_pipe)

# functionality

def upscaler(
    input_image: Image.Image,
    prompt: str = "Hyper realistic photography, Natural visual content.",
    negative_prompt: str = "Distorted, Discontinuous, Blurry, Doll-Like, Overly-Plastic, Low-Quality, Painted, Smoothed, Artificial, Phony, Gaudy, Digital Effects.",
    seed: int = random.randint(0, MAX_SEED),
    upscale_factor: int = 2,
    controlnet_scale: float = 0.6,
    controlnet_decay: float = 1.0,
    condition_scale: int = 6,
    tile_width: int = 112,
    tile_height: int = 144,
    denoise_strength: float = 0.35,
    num_inference_steps: int = 15,
    solver: str = "DDIM",
) -> Image.Image:

    log(f'CALL upscaler')

    if not working:

        working = True
        
        manual_seed(seed)
    
        solver_type: type[Solver] = getattr(solvers, solver)
    
        log(f'DBG upscaler 1')
    
        enhanced_image = enhancer.upscale(
            image=input_image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            upscale_factor=upscale_factor,
            controlnet_scale=controlnet_scale,
            controlnet_scale_decay=controlnet_decay,
            condition_scale=condition_scale,
            tile_size=(tile_height, tile_width),
            denoise_strength=denoise_strength,
            num_inference_steps=num_inference_steps,
            loras_scale={"more_details": 0.5, "sdxl_render": 1.0},
            solver_type=solver_type,
        )

        _HEIGHT_ = _HEIGHT_ * upscale_factor
        _WIDTH_ = _WIDTH_ * upscale_factor
        
        log(f'RET upscaler')

        working = False
        
        return enhanced_image

def get_tensor_length(tensor):
    nums = list(tensor.size())
    ret = 1
    for num in nums:
        ret = ret * num
    return ret

def _summarize(text):
    log(f'CALL _summarize')
    prefix = "summarize: "
    toks = tokenizer.encode( prefix + text, return_tensors="pt", truncation=False)
    gen = model.generate(
        toks,
        length_penalty=0.9,
        num_beams=8,
        early_stopping=True,
        max_length=512
    )
    ret = tokenizer.decode(gen[0], skip_special_tokens=True)
    log(f'RET _summarize with ret as {ret}')
    return ret

def summarize(text, max_len=400):
    log(f'CALL summarize')
    
    words = text.split()
    words_length = len(words)

    if words_length >= 510:
        while words_length >= 510:
            words = text.split()
            sum = _summarize(
                " ".join(words[0:510])
            ) + " ".join(words[510:])
            if summ == text:
                return text
            text = summ
            words_length = len(text.split())
    
    while len(text) > max_len:
        summ = _summarize(text)
        if summ == text:
            return text
        text = summ
        
    log(f'RET summarize with text as {text}')
    return text

def generate_random_string(length):
    characters = str(ascii_letters + digits)
    return ''.join(random.choice(characters) for _ in range(length))

def add_song_cover_text(img,top_title=None,bottom_title=None):

    if not working:

        working = True

        h = _HEIGHT_
        w = _WIDTH_
        
        draw = ImageDraw.Draw(img,mode="RGBA")
    
        labels_distance = 1/3
    
        if top_title:
            rows = len(song.split("\n"))
            textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
            font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
            textwidth = draw.textlength(top_title,font)
            x = math.ceil((w - textwidth) / 2)
            y = h - (textheight * rows / 2) - (h / 2)
            y = math.ceil(y - (h / 2 * labels_distance))
            draw.text((x, y), top_title, (255,255,255), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(0,0,0))
    
        if bottom_title:
            rows = len(artist.split("\n"))
            textheight=min(math.ceil( w / 10 ), math.ceil( h / 5 ))
            font = ImageFont.truetype(r"Alef-Bold.ttf", textheight)
            textwidth = draw.textlength(bottom_title,font)
            x = math.ceil((w - textwidth) / 2)
            y = h - (textheight * rows / 2) - (h / 2)
            y = math.ceil(y + (h / 2 * labels_distance))
            draw.text((x, y), bottom_title, (0,0,0), font=font, spacing=2, stroke_width=math.ceil(textheight/20), stroke_fill=(255,255,255))

        working = False
        
        return img

google_translate_endpoint = "https://translate.google.com/m"
language_codes = {
    "afrikaans": "af",
    "albanian": "sq",
    "amharic": "am",
    "arabic": "ar",
    "armenian": "hy",
    "assamese": "as",
    "aymara": "ay",
    "azerbaijani": "az",
    "bambara": "bm",
    "basque": "eu",
    "belarusian": "be",
    "bengali": "bn",
    "bhojpuri": "bho",
    "bosnian": "bs",
    "bulgarian": "bg",
    "catalan": "ca",
    "cebuano": "ceb",
    "chichewa": "ny",
    "chinese (simplified)": "zh-CN",
    "chinese (traditional)": "zh-TW",
    "corsican": "co",
    "croatian": "hr",
    "czech": "cs",
    "danish": "da",
    "dhivehi": "dv",
    "dogri": "doi",
    "dutch": "nl",
    "english": "en",
    "esperanto": "eo",
    "estonian": "et",
    "ewe": "ee",
    "filipino": "tl",
    "finnish": "fi",
    "french": "fr",
    "frisian": "fy",
    "galician": "gl",
    "georgian": "ka",
    "german": "de",
    "greek": "el",
    "guarani": "gn",
    "gujarati": "gu",
    "haitian creole": "ht",
    "hausa": "ha",
    "hawaiian": "haw",
    "hebrew": "iw",
    "hindi": "hi",
    "hmong": "hmn",
    "hungarian": "hu",
    "icelandic": "is",
    "igbo": "ig",
    "ilocano": "ilo",
    "indonesian": "id",
    "irish": "ga",
    "italian": "it",
    "japanese": "ja",
    "javanese": "jw",
    "kannada": "kn",
    "kazakh": "kk",
    "khmer": "km",
    "kinyarwanda": "rw",
    "konkani": "gom",
    "korean": "ko",
    "krio": "kri",
    "kurdish (kurmanji)": "ku",
    "kurdish (sorani)": "ckb",
    "kyrgyz": "ky",
    "lao": "lo",
    "latin": "la",
    "latvian": "lv",
    "lingala": "ln",
    "lithuanian": "lt",
    "luganda": "lg",
    "luxembourgish": "lb",
    "macedonian": "mk",
    "maithili": "mai",
    "malagasy": "mg",
    "malay": "ms",
    "malayalam": "ml",
    "maltese": "mt",
    "maori": "mi",
    "marathi": "mr",
    "meiteilon (manipuri)": "mni-Mtei",
    "mizo": "lus",
    "mongolian": "mn",
    "myanmar": "my",
    "nepali": "ne",
    "norwegian": "no",
    "odia (oriya)": "or",
    "oromo": "om",
    "pashto": "ps",
    "persian": "fa",
    "polish": "pl",
    "portuguese": "pt",
    "punjabi": "pa",
    "quechua": "qu",
    "romanian": "ro",
    "russian": "ru",
    "samoan": "sm",
    "sanskrit": "sa",
    "scots gaelic": "gd",
    "sepedi": "nso",
    "serbian": "sr",
    "sesotho": "st",
    "shona": "sn",
    "sindhi": "sd",
    "sinhala": "si",
    "slovak": "sk",
    "slovenian": "sl",
    "somali": "so",
    "spanish": "es",
    "sundanese": "su",
    "swahili": "sw",
    "swedish": "sv",
    "tajik": "tg",
    "tamil": "ta",
    "tatar": "tt",
    "telugu": "te",
    "thai": "th",
    "tigrinya": "ti",
    "tsonga": "ts",
    "turkish": "tr",
    "turkmen": "tk",
    "twi": "ak",
    "ukrainian": "uk",
    "urdu": "ur",
    "uyghur": "ug",
    "uzbek": "uz",
    "vietnamese": "vi",
    "welsh": "cy",
    "xhosa": "xh",
    "yiddish": "yi",
    "yoruba": "yo",
    "zulu": "zu",
}

class BaseError(Exception):
    """
    base error structure class
    """

    def __init__(self, val, message):
        """
        @param val: actual value
        @param message: message shown to the user
        """
        self.val = val
        self.message = message
        super().__init__()

    def __str__(self):
        return "{} --> {}".format(self.val, self.message)


class LanguageNotSupportedException(BaseError):
    """
    exception thrown if the user uses a language
    that is not supported by the deep_translator
    """

    def __init__(
        self, val, message="There is no support for the chosen language"
    ):
        super().__init__(val, message)


class NotValidPayload(BaseError):
    """
    exception thrown if the user enters an invalid payload
    """

    def __init__(
        self,
        val,
        message="text must be a valid text with maximum 5000 character,"
        "otherwise it cannot be translated",
    ):
        super(NotValidPayload, self).__init__(val, message)


class InvalidSourceOrTargetLanguage(BaseError):
    """
    exception thrown if the user enters an invalid payload
    """

    def __init__(self, val, message="Invalid source or target language!"):
        super(InvalidSourceOrTargetLanguage, self).__init__(val, message)


class TranslationNotFound(BaseError):
    """
    exception thrown if no translation was found for the text provided by the user
    """

    def __init__(
        self,
        val,
        message="No translation was found using the current translator. Try another translator?",
    ):
        super(TranslationNotFound, self).__init__(val, message)


class ElementNotFoundInGetRequest(BaseError):
    """
    exception thrown if the html element was not found in the body parsed by beautifulsoup
    """

    def __init__(
        self, val, message="Required element was not found in the API response"
    ):
        super(ElementNotFoundInGetRequest, self).__init__(val, message)


class NotValidLength(BaseError):
    """
    exception thrown if the provided text exceed the length limit of the translator
    """

    def __init__(self, val, min_chars, max_chars):
        message = f"Text length need to be between {min_chars} and {max_chars} characters"
        super(NotValidLength, self).__init__(val, message)


class RequestError(Exception):
    """
    exception thrown if an error occurred during the request call, e.g a connection problem.
    """

    def __init__(
        self,
        message="Request exception can happen due to an api connection error. "
        "Please check your connection and try again",
    ):
        self.message = message

    def __str__(self):
        return self.message



class TooManyRequests(Exception):
    """
    exception thrown if an error occurred during the request call, e.g a connection problem.
    """

    def __init__(
        self,
        message="Server Error: You made too many requests to the server."
        "According to google, you are allowed to make 5 requests per second"
        "and up to 200k requests per day. You can wait and try again later or"
        "you can try the translate_batch function",
    ):
        self.message = message

    def __str__(self):
        return self.message

class ServerException(Exception):
    """
    Default YandexTranslate exception from the official website
    """

    errors = {
        400: "ERR_BAD_REQUEST",
        401: "ERR_KEY_INVALID",
        402: "ERR_KEY_BLOCKED",
        403: "ERR_DAILY_REQ_LIMIT_EXCEEDED",
        404: "ERR_DAILY_CHAR_LIMIT_EXCEEDED",
        413: "ERR_TEXT_TOO_LONG",
        429: "ERR_TOO_MANY_REQUESTS",
        422: "ERR_UNPROCESSABLE_TEXT",
        500: "ERR_INTERNAL_SERVER_ERROR",
        501: "ERR_LANG_NOT_SUPPORTED",
        503: "ERR_SERVICE_NOT_AVAIBLE",
    }

    def __init__(self, status_code, *args):
        message = self.errors.get(status_code, "API server error")
        super(ServerException, self).__init__(message, *args)

def is_empty(text: str) -> bool:
    return text == ""


def request_failed(status_code: int) -> bool:
    """Check if a request has failed or not.
    A request is considered successfull if the status code is in the 2** range.

    Args:
        status_code (int): status code of the request

    Returns:
        bool: indicates request failure
    """
    if status_code > 299 or status_code < 200:
        return True
    return False


def is_input_valid(
    text: str, min_chars: int = 0, max_chars: Optional[int] = None
) -> bool:
    """
    validate the target text to translate
    @param min_chars: min characters
    @param max_chars: max characters
    @param text: text to translate
    @return: bool
    """

    if not isinstance(text, str):
        raise NotValidPayload(text)
    if max_chars and (not min_chars <= len(text) < max_chars):
        raise NotValidLength(text, min_chars, max_chars)

    return True

class BaseTranslator(ABC):
    """
    Abstract class that serve as a base translator for other different translators
    """

    def __init__(
        self,
        base_url: str = None,
        languages: dict = language_codes,
        source: str = "auto",
        target: str = "en",
        payload_key: Optional[str] = None,
        element_tag: Optional[str] = None,
        element_query: Optional[dict] = None,
        **url_params,
    ):
        """
        @param source: source language to translate from
        @param target: target language to translate to
        """
        self._base_url = base_url
        self._languages = languages
        self._supported_languages = list(self._languages.keys())
        if not source:
            raise InvalidSourceOrTargetLanguage(source)
        if not target:
            raise InvalidSourceOrTargetLanguage(target)

        self._source, self._target = self._map_language_to_code(source, target)
        self._url_params = url_params
        self._element_tag = element_tag
        self._element_query = element_query
        self.payload_key = payload_key
        super().__init__()

    @property
    def source(self):
        return self._source

    @source.setter
    def source(self, lang):
        self._source = lang

    @property
    def target(self):
        return self._target

    @target.setter
    def target(self, lang):
        self._target = lang

    def _type(self):
        return self.__class__.__name__

    def _map_language_to_code(self, *languages):
        """
        map language to its corresponding code (abbreviation) if the language was passed
        by its full name by the user
        @param languages: list of languages
        @return: mapped value of the language or raise an exception if the language is
        not supported
        """
        for language in languages:
            if language in self._languages.values() or language == "auto":
                yield language
            elif language in self._languages.keys():
                yield self._languages[language]
            else:
                raise LanguageNotSupportedException(
                    language,
                    message=f"No support for the provided language.\n"
                    f"Please select on of the supported languages:\n"
                    f"{self._languages}",
                )

    def _same_source_target(self) -> bool:
        return self._source == self._target

    def get_supported_languages(
        self, as_dict: bool = False, **kwargs
    ) -> Union[list, dict]:
        """
        return the supported languages by the Google translator
        @param as_dict: if True, the languages will be returned as a dictionary
        mapping languages to their abbreviations
        @return: list or dict
        """
        return self._supported_languages if not as_dict else self._languages

    def is_language_supported(self, language: str, **kwargs) -> bool:
        """
        check if the language is supported by the translator
        @param language: a string for 1 language
        @return: bool or raise an Exception
        """
        if (
            language == "auto"
            or language in self._languages.keys()
            or language in self._languages.values()
        ):
            return True
        else:
            return False

    @abstractmethod
    def translate(self, text: str, **kwargs) -> str:
        """
        translate a text using a translator under the hood and return
        the translated text
        @param text: text to translate
        @param kwargs: additional arguments
        @return: str
        """
        return NotImplemented("You need to implement the translate method!")

    def _read_docx(self, f: str):
        import docx2txt

        return docx2txt.process(f)

    def _read_pdf(self, f: str):
        import pypdf

        reader = pypdf.PdfReader(f)
        page = reader.pages[0]
        return page.extract_text()

    def _translate_file(self, path: str, **kwargs) -> str:
        """
        translate directly from file
        @param path: path to the target file
        @type path: str
        @param kwargs: additional args
        @return: str
        """
        if not isinstance(path, Path):
            path = Path(path)

        if not path.exists():
            print("Path to the file is wrong!")
            exit(1)

        ext = path.suffix

        if ext == ".docx":
            text = self._read_docx(f=str(path))

        elif ext == ".pdf":
            text = self._read_pdf(f=str(path))
        else:
            with open(path, "r", encoding="utf-8") as f:
                text = f.read().strip()

        return self.translate(text)

    def _translate_batch(self, batch: List[str], **kwargs) -> List[str]:
        """
        translate a list of texts
        @param batch: list of texts you want to translate
        @return: list of translations
        """
        if not batch:
            raise Exception("Enter your text list that you want to translate")
        arr = []
        for i, text in enumerate(batch):
            translated = self.translate(text, **kwargs)
            arr.append(translated)
        return arr

class GoogleTranslator(BaseTranslator):
    """
    class that wraps functions, which use Google Translate under the hood to translate text(s)
    """

    def __init__(
        self,
        source: str = "auto",
        target: str = "en",
        proxies: Optional[dict] = None,
        **kwargs
    ):
        """
        @param source: source language to translate from
        @param target: target language to translate to
        """
        self.proxies = proxies
        super().__init__(
            base_url=google_translate_endpoint,
            source=source,
            target=target,
            element_tag="div",
            element_query={"class": "t0"},
            payload_key="q",  # key of text in the url
            **kwargs
        )

        self._alt_element_query = {"class": "result-container"}

    def translate(self, text: str, **kwargs) -> str:
        """
        function to translate a text
        @param text: desired text to translate
        @return: str: translated text
        """
        if is_input_valid(text, max_chars=1000):
            text = text.strip()
            if self._same_source_target() or is_empty(text):
                return text
            self._url_params["tl"] = self._target
            self._url_params["sl"] = self._source

            if self.payload_key:
                self._url_params[self.payload_key] = text

            response = requests.get(
                self._base_url, params=self._url_params, proxies=self.proxies
            )
            if response.status_code == 429:
                raise TooManyRequests()

            if request_failed(status_code=response.status_code):
                raise RequestError()

            soup = BeautifulSoup(response.text, "html.parser")

            element = soup.find(self._element_tag, self._element_query)
            response.close()

            if not element:
                element = soup.find(self._element_tag, self._alt_element_query)
                if not element:
                    raise TranslationNotFound(text)
            if element.get_text(strip=True) == text.strip():
                to_translate_alpha = "".join(
                    ch for ch in text.strip() if ch.isalnum()
                )
                translated_alpha = "".join(
                    ch for ch in element.get_text(strip=True) if ch.isalnum()
                )
                if (
                    to_translate_alpha
                    and translated_alpha
                    and to_translate_alpha == translated_alpha
                ):
                    self._url_params["tl"] = self._target
                    if "hl" not in self._url_params:
                        return text.strip()
                    del self._url_params["hl"]
                    return self.translate(text)

            else:
                return element.get_text(strip=True)

    def translate_file(self, path: str, **kwargs) -> str:
        """
        translate directly from file
        @param path: path to the target file
        @type path: str
        @param kwargs: additional args
        @return: str
        """
        return self._translate_file(path, **kwargs)

    def translate_batch(self, batch: List[str], **kwargs) -> List[str]:
        """
        translate a list of texts
        @param batch: list of texts you want to translate
        @return: list of translations
        """
        return self._translate_batch(batch, **kwargs)

def translate(txt,to_lang="en",from_lang="auto"):
    log(f'CALL translate')
    if len(txt) == 0:
        print("Translated text is empty. Skipping translation...")
        return txt.strip().lower()
    if from_lang == to_lang or get_language(txt) == to_lang:
        print("Same languages. Skipping translation...")
        return txt.strip().lower()
    translator = GoogleTranslator(from_lang=from_lang,to_lang=to_lang)
    translation = ""
    if len(txt) > 1000:
        words = txt.split()
        while len(words) > 0:
            chunk = ""
            while len(words) > 0 and len(chunk) < 1000:
                chunk = chunk + " " + words[0]
                words = words[1:]
            if len(chunk) > 1000:
                _words = chunk.split()
                words = [_words[-1], *words]
                chunk = " ".join(_words[:-1])
            translation = translation + " " + translator.translate(chunk)
    else:
        translation = translator.translate(txt)
    translation = translation.strip()
    log(f'RET translate with translation as {translation}')
    return translation.lower()

@spaces.GPU(duration=300)
def handle_generation(h,w,d):

    log(f'CALL handle_generate')

    if not working:

        working = True
        
        d = re.sub(r",( ){1,}",". ",d)
        d_lines = re.split(r"([\n]){1,}", d)
        
        for line_index in range(len(d_lines)):
            d_lines[line_index] = d_lines[line_index].strip()
            if re.sub(r'[\.]$', '', d_lines[line_index]) == d_lines[line_index]:
                d_lines[line_index] = d_lines[line_index].strip() + "."
        d = " ".join(d_lines)
    
        pos_d = re.sub(r"([ \t]){1,}", " ", d).lower().strip()
        pos_d = pos_d if pos_d == "" else summarize(translate(pos_d))
        pos_d = re.sub(r"([ \t]){1,}", " ", pos_d).lower().strip()
    
        neg = f"Textual, Text, Distorted, Fake, Discontinuous, Blurry, Doll-Like, Overly Plastic, Low Quality, Paint, Smoothed, Artificial, Phony, Gaudy, Digital Effects."
        q = "\""
        pos = f'HQ Hyper-realistic professional photograph{ pos_d if pos_d == "" else ": " + pos_d }.'
    
        print(f"""
            Positive: {pos}
    
            Negative: {neg}
        """)
    
        img = image_pipe(
            prompt=pos,
            negative_prompt=neg,
            height=h,
            width=w,
            output_type="pil",
            guidance_scale=img_accu,
            num_images_per_prompt=1,
            num_inference_steps=image_steps,
            max_sequence_length=seq,
            generator=torch.Generator(device).manual_seed(random.randint(0, MAX_SEED))
        )

        working = False

        _HEIGHT_ = h
        _WIDTH_ = w
        
        return img
   
# entry

if __name__ == "__main__":
    with gr.Blocks(theme=gr.themes.Citrus(),css=css) as demo:
        gr.Markdown(f"""
            # Text-to-Image generator
        """)
        gr.Markdown(f"""
            ### Realistic. Upscalable. Multilingual.
        """)
        
        with gr.Row():
            with gr.Column(scale=3):
                
                height = gr.Slider(
                    label="Height (px)",
                    minimum=512,
                    maximum=2048,
                    step=16,
                    value=1024,
                )

                width = gr.Slider(
                    label="Width (px)",
                    minimum=512,
                    maximum=2048,
                    step=16,
                    value=1024,
                )

                run = gr.Button("Generate",elem_classes="btn")
    
                data = gr.Textbox(
                    placeholder="Input data",
                    value="",
                    container=False,
                    max_lines=100
                )

            with gr.Column():
                cover = gr.Image(interactive=False,container=False,elem_classes="image-container", label="Result", show_label=True, type='pil', show_share_button=False)
                with gr.Column():
                    upscale_now = gr.Button("Upscale",elem_classes="btn")
                with gr.Column():
                    top = gr.Textbox(
                        placeholder="Top title",
                        value="",
                        container=False,
                        max_lines=1
                    )
                    bottom = gr.Textbox(
                        placeholder="Bottom title",
                        value="",
                        container=False,
                        max_lines=1
                    )
                    add_titles = gr.Button("Add title(s)",elem_classes="btn")
        gr.on(
            triggers=[run.click],
            fn=handle_generation,
            inputs=[height,width,data],
            outputs=[cover]
        )
        upscale_now.click(
            fn=upscaler,
            inputs=[cover],
            outputs=[cover]
        )
        add_titles.click(
            fn=add_song_cover_text,
            inputs=[cover,top,bottom],
            outputs=[cover]
        )
        

    demo.queue().launch()