File size: 4,869 Bytes
b4f9b4b
f1052d9
a67a3c8
b4f9b4b
210ed13
95af88e
210ed13
b1328e8
ea26522
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
ba57615
76b48d0
62c5b0c
f8fb4da
a65820a
210ed13
f8fb4da
210ed13
 
9d19d52
210ed13
 
f043e56
210ed13
 
3ed5fef
1d16cc9
 
a597e6b
 
 
 
 
 
 
 
 
02471b0
84291d5
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
db97e79
84291d5
 
83d3e5a
f2fa35d
 
 
 
 
 
83d3e5a
 
 
b4f9b4b
 
 
 
 
209a22d
9154d2d
1f747ea
7300f25
02471b0
 
9154d2d
 
02471b0
452be41
 
02471b0
b4f9b4b
02471b0
9154d2d
b4f9b4b
210ed13
 
 
 
02471b0
b9d2cc5
 
 
210ed13
2daa864
 
 
210ed13
 
aac4d05
32ecfac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac4d05
 
210ed13
 
 
 
 
aac4d05
210ed13
 
62c5b0c
 
210ed13
02471b0
 
aac4d05
c1c292c
02471b0
 
 
 
 
 
b9d2cc5
210ed13
 
02471b0
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusion3Pipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(4)
pool.__enter__()

#model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)
else: 
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)

def translate(text,lang):
    text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
    lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    url = f'https://www.google.com/search?q={lang}: {text}'
    print(url)
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    print(resp)
    content = resp.content
    html = fromstring(content)
    rslt = html.xpath('//pre[@aria-label="Translated text"]/span')
    translated = text
    try:
        t = rslt[0].text.strip()
        translated = t
    except:
        print(f'"{text}" is already in {lang}!')
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU
def Piper(_do):
    return pipe(
        _do,
        height=512,
        width=512,
        negative_prompt="",
        num_inference_steps=100,
        guidance_scale=10
    )

def infer(prompt):
    name = generate_random_string(12)+".png"
    _do = f'true {prompt1}:'.upper()
    image = Piper(_do).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 15cm;
}
#image-container {
    aspect-ratio: 1 / 1;
}
.dropdown-arrow {
    display: none !important;
}
"""

js="""
function custom(){
    window.Wait = function (Test, Success, Fail = function () { }, timeout = Number.MAX_SAFE_INTEGER) {
    	let seconds = 0;
    	function Internal() {
    		if (!Test()) {
    		if (seconds >= timeout) {
    				Fail();
    				return;
    			}
    			setTimeout(function () {
    				seconds += 0.01;
    				Internal(...arguments);
    			}, 300);
    			return;
    	}
    		Success();
    	}
    	Internal();
    };
    
    Wait(function(){
        return document.querySelector("div#prompt input")
    },function(){
        document.querySelector("div#prompt input").setAttribute(maxlength,"38");
    },function(){});
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Textbox(
                elem_id="prompt",
                placeholder="Describe the photo",
                container=False,
                rtl=True,
                max_lines=1
            )
        with gr.Row():
            run_button = gr.Button("Run")
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()