File size: 2,287 Bytes
62c5b0c
b4f9b4b
 
210ed13
 
62c5b0c
210ed13
b4f9b4b
 
 
62c5b0c
b4f9b4b
 
62c5b0c
 
210ed13
 
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
3ed5fef
 
b4f9b4b
3ed5fef
 
b4f9b4b
 
 
 
 
 
62c5b0c
b4f9b4b
3ed5fef
b4f9b4b
210ed13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
62c5b0c
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import spaces
import gradio as gr
#from tempfile import NamedTemporaryFile
import numpy as np
import random
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
#from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html.soupparser import fromstring

#pool = ProcessPoolExecutor(100)
#pool.__enter__()

model_id = "runwayml/stable-diffusion-v1-5"

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    html_str = requests.get( url = "https://translate.google.com", params = {"sl": "auto", "tl": lang, "op": "translate", "text": text} ).text()
    tree = fromstring(html_str)
    translated = tree.xpath('span[lang="'+lang+'"]/span/span/text()')[0]
    return translated

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

@spaces.GPU(25)
def infer(prompt):
    name = generate_random_string(12)+".png"
    image = pipe(translate(prompt,"en")).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()