File size: 3,948 Bytes
b4f9b4b
f1052d9
a67a3c8
b4f9b4b
210ed13
f043c9b
210ed13
b1328e8
ea26522
210ed13
76b48d0
b4f9b4b
ecc81cb
62c5b0c
452be41
76b48d0
62c5b0c
f8fb4da
a65820a
210ed13
f8fb4da
210ed13
 
9d19d52
210ed13
 
a65820a
210ed13
 
3ed5fef
a597e6b
 
 
 
 
 
 
 
 
84291d5
 
c6e402b
84291d5
7206ba2
a597e6b
48e1ac1
758f177
db97e79
84291d5
 
83d3e5a
84291d5
83d3e5a
 
 
b4f9b4b
 
 
 
 
452be41
 
 
 
 
 
 
 
 
 
8d36c91
62c5b0c
b4f9b4b
a299302
93b8891
452be41
b4f9b4b
210ed13
 
 
 
ba096c1
b9d2cc5
 
 
210ed13
 
 
 
 
 
 
 
 
 
 
62c5b0c
 
210ed13
 
 
 
 
 
 
 
 
 
b9d2cc5
210ed13
 
62c5b0c
210ed13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusion3Pipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring

pool = ProcessPoolExecutor(1000)
pool.__enter__()

#model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"

device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
    pipe = pipe.to(device)
else: 
    pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True)
    pipe = pipe.to(device)

def translate(text,lang):
    user_agents = [
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
        'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
    ]
    url = f'https://www.google.com/search?q=translate to {lang}: {text}'
    print(url)
    resp = requests.get(
        url = url,
        headers = {
            'User-Agent': random.choice(user_agents)
        }
    )
    print(resp)
    content = resp.content
    html = fromstring(content)
    rslt = html.xpath('//pre[@aria-label="Translated text"]/span')
    translated = rslt[0].text.strip()
    ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
    print(ret)
    return ret

def generate_random_string(length):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

def Pipe(english_prompt, height, width):
    return Pipe(
        english_prompt,
        height=192,
        width=192,
        negative_prompt="",
        num_inference_steps=150,
        guidance_scale=10
    )

@spaces.GPU
def infer(prompt):
    name = generate_random_string(12)+".png"
    english_prompt = f'TRUE {translate(prompt,"english").upper()}:'
    print(f'Final prompt: {english_prompt}')
    image = Pipe(english_prompt, height, width).images[0].save(name)
    return name

css="""
#col-container {
    margin: 0 auto;
    max-width: 14cm;
}
#image-container {
    aspect-ratio: 1 / 1;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
            # Image Generator
            Currently running on {power_device}.
        """)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
    run_button.click(
        fn = infer,
        inputs = [prompt],
        outputs = [result]
    )

demo.queue().launch()