Spaces:
Sleeping
Sleeping
File size: 3,948 Bytes
b4f9b4b f1052d9 a67a3c8 b4f9b4b 210ed13 f043c9b 210ed13 b1328e8 ea26522 210ed13 76b48d0 b4f9b4b ecc81cb 62c5b0c 452be41 76b48d0 62c5b0c f8fb4da a65820a 210ed13 f8fb4da 210ed13 9d19d52 210ed13 a65820a 210ed13 3ed5fef a597e6b 84291d5 c6e402b 84291d5 7206ba2 a597e6b 48e1ac1 758f177 db97e79 84291d5 83d3e5a 84291d5 83d3e5a b4f9b4b 452be41 8d36c91 62c5b0c b4f9b4b a299302 93b8891 452be41 b4f9b4b 210ed13 ba096c1 b9d2cc5 210ed13 62c5b0c 210ed13 b9d2cc5 210ed13 62c5b0c 210ed13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusion3Pipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring
pool = ProcessPoolExecutor(1000)
pool.__enter__()
#model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True)
pipe = pipe.to(device)
def translate(text,lang):
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
url = f'https://www.google.com/search?q=translate to {lang}: {text}'
print(url)
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
print(resp)
content = resp.content
html = fromstring(content)
rslt = html.xpath('//pre[@aria-label="Translated text"]/span')
translated = rslt[0].text.strip()
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
def Pipe(english_prompt, height, width):
return Pipe(
english_prompt,
height=192,
width=192,
negative_prompt="",
num_inference_steps=150,
guidance_scale=10
)
@spaces.GPU
def infer(prompt):
name = generate_random_string(12)+".png"
english_prompt = f'TRUE {translate(prompt,"english").upper()}:'
print(f'Final prompt: {english_prompt}')
image = Pipe(english_prompt, height, width).images[0].save(name)
return name
css="""
#col-container {
margin: 0 auto;
max-width: 14cm;
}
#image-container {
aspect-ratio: 1 / 1;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image Generator
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch() |