Spaces:
Sleeping
Sleeping
File size: 3,856 Bytes
b4f9b4b a67a3c8 b4f9b4b 210ed13 f043c9b 210ed13 b1328e8 62c5b0c 210ed13 76b48d0 b4f9b4b ecc81cb 62c5b0c 9b79250 76b48d0 62c5b0c 210ed13 62c5b0c 210ed13 62c5b0c 210ed13 3ed5fef a597e6b 758f177 7206ba2 781571c 7206ba2 48e1ac1 a597e6b 48e1ac1 758f177 3ed5fef b4f9b4b cbed2ab 62c5b0c b4f9b4b a67a3c8 93b8891 b4f9b4b 210ed13 099ffc5 b9d2cc5 210ed13 62c5b0c 210ed13 b9d2cc5 210ed13 62c5b0c 210ed13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusionPipeline as DiffusionPipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring
pool = ProcessPoolExecutor(16)
pool.__enter__()
model_id = "runwayml/stable-diffusion-v1-5"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True)
pipe = pipe.to(device)
def translate(text,lang):
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
resp = requests.post(
url = "https://www.bing.com/ttranslatev3?isVertical=1&&IG=13172331D0494B12ABFA8F4454EEB479&IID=translator.5026",
data = f"&fromLang=auto-detect&to={lang}&token=cdkbEXg93_iQE28MFPv9ScrPY_fs2OAw&key=1722124106496&text={text}&tryFetchingGenderDebiasedTranslations=true",
headers = {
"content-type": "application/x-www-form-urlencoded",
'User-Agent': random.choice(user_agents)
}
)
print(resp)
jsn = resp.json()
print(jsn)
translated = jsn[0]["translations"][0]["text"]
return translated
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=20)
def infer(prompt):
name = generate_random_string(12)+".png"
english_prompt = "Real & Reasonable Scenario: " + re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translate(prompt,"en"))).upper().strip() + ". Generate that scenario in an authentic form. Use realistic content!"
print(f'Final prompt: {english_prompt}')
image = pipe(english_prompt).images[0].save(name)
return name
css="""
#col-container {
margin: 0 auto;
max-width: 12cm;
}
#image-container {
aspect-ratio: 1 / 1;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image Generator
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch() |