Kokoro-API-5 / app.py
Yaron Koresh
Update app.py
1218524 verified
raw
history blame
4.39 kB
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import StableDiffusion3Pipeline
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring
pool = ProcessPoolExecutor(4)
pool.__enter__()
#model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = StableDiffusion3Pipeline.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
def translate(text,lang):
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
url = f'https://www.google.com/search?q={lang}: {text}'
print(url)
resp = requests.get(
url = url,
headers = {
'User-Agent': random.choice(user_agents)
}
)
print(resp)
content = resp.content
html = fromstring(content)
rslt = html.xpath('//pre[@aria-label="Translated text"]/span')
translated = text
try:
t = rslt[0].text.strip()
translated = t
except:
print(f'"{text}" is already in {lang}!')
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU
def Piper(_do):
return pipe(
_do,
height=512,
width=512,
negative_prompt="",
num_inference_steps=100,
guidance_scale=10
)
def infer(prompt):
name = generate_random_string(12)+".png"
_do = f'true {prompt1}:'.upper()
image = Piper(_do).images[0].save(name)
return name
css="""
#col-container {
margin: 0 auto;
max-width: 15cm;
}
#image-container {
aspect-ratio: 1 / 1;
}
.dropdown-arrow {
display: none !important;
}
"""
js="""
document.addEventListener("load",function(e){
document.querySelector("div#prompt input").setAttribute(maxlength,"38")
});
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
def limiter(txt):
return txt[:38]
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image Generator
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Describe the photo",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("Run")
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch()