Spaces:
Sleeping
Sleeping
import os | |
import re | |
import spaces | |
import random | |
import string | |
import torch | |
import requests | |
import gradio as gr | |
import numpy as np | |
from lxml.html import fromstring | |
from diffusers import AutoPipelineForText2Image | |
#from tempfile import NamedTemporaryFile | |
#from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor | |
#pool = ProcessPoolExecutor(1000) | |
#pool.__enter__() | |
#model_id = "runwayml/stable-diffusion-v1-5" | |
#model_id = "kandinsky-community/kandinsky-3" | |
model_id = "stabilityai/stable-diffusion-3-medium-diffusers" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token')) | |
pipe = pipe.to(device) | |
else: | |
pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token')) | |
pipe = pipe.to(device) | |
def translate(text,lang): | |
if text == None or lang == None: | |
return "" | |
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip() | |
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip() | |
if text == "" or lang == "": | |
return "" | |
if len(text) > 38: | |
raise Exception("Translation Error: Too long text!") | |
user_agents = [ | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15', | |
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15' | |
] | |
url = 'https://www.google.com/search' | |
resp = requests.get( | |
url = url, | |
params = {'q': f'{lang} translate {text}'}, | |
headers = { | |
'User-Agent': random.choice(user_agents) | |
} | |
) | |
content = resp.content | |
html = fromstring(content) | |
#src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip() | |
translated = text | |
try: | |
trgt = html.xpath('//span[@class="target-language"]')[0].text.strip() | |
rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip() | |
if trgt.lower() == lang.lower(): | |
translated = rslt | |
except: | |
raise Exception("Translation Error!") | |
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip() | |
print(ret) | |
return ret | |
def generate_random_string(length): | |
characters = string.ascii_letters + string.digits | |
return ''.join(random.choice(characters) for _ in range(length)) | |
def Piper(_do,_dont): | |
return pipe( | |
_do, | |
height=512, | |
width=576, | |
negative_prompt=_dont, | |
num_inference_steps=200, | |
guidance_scale=4 | |
) | |
def infer(prompt,prompt2): | |
name = generate_random_string(12)+".png" | |
prompt_en = translate(prompt,"english") | |
prompt2_en = translate(prompt2,"english") | |
if prompt == None or prompt.strip() == "": | |
_do = 'sharp warm dark muted vintage foreground colors, rough texture, dynamic poze, proportional, reasonable, realistic, natural, sharp cold light vivid pastel background colors' | |
else: | |
_do = f'photographed { prompt_en }, sharp warm dark muted vintage foreground colors, rough texture, dynamic poze, proportional, reasonable, realistic, natural, sharp cold light vivid pastel background colors' | |
if prompt2 == None or prompt2.strip() == "": | |
_dont = 'unreasonable, unreal, ugly, deformed, disfigured, poor details, bad anatomy, logos, texts, labels' | |
else: | |
_dont = f'{prompt2_en}, {prompt2_en} where in {prompt_en}, labels where in {prompt_en}, unreasonable, unreal, texts, logos, ugly, deformed, disfigured, poor details, bad anatomy' | |
image = Piper(_do,_dont).images[0].save(name) | |
return name | |
css=""" | |
input::placeholder { | |
text-align: center !important; | |
} | |
*, *::placeholder { | |
direction: rtl !important; | |
font-family: Suez One !important; | |
} | |
h1,h2,h3,h4,h5,h6,span,p,pre { | |
width: 100% !important; | |
text-align: center !important; | |
display: block !important; | |
} | |
footer { | |
display: none !important; | |
} | |
#col-container { | |
margin: 0 auto !important; | |
max-width: 15cm !important; | |
} | |
#image-container { | |
aspect-ratio: 576 / 512 !important; | |
} | |
.dropdown-arrow { | |
display: none !important; | |
} | |
""" | |
js=""" | |
function custom(){ | |
document.querySelector("div#prompt input").setAttribute("maxlength","27"); | |
document.querySelector("div#prompt2 input").setAttribute("maxlength","27"); | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "诪注讘讚 讙专驻讬" | |
else: | |
power_device = "诪注讘讚 诇讜讙讬" | |
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# 转诪讜谞讜转 讗讬讻讜转讬讜转 诪讘讬谞讛 诪诇讗讻讜转讬转 | |
专抓 注诇 {power_device} | |
""") | |
with gr.Row(): | |
prompt = gr.Textbox( | |
elem_id="prompt", | |
placeholder="诪讛 *讻谉* 诇讛讜住讬祝", | |
container=False, | |
rtl=True, | |
max_lines=1 | |
) | |
with gr.Row(): | |
prompt2 = gr.Textbox( | |
elem_id="prompt2", | |
placeholder="诪讛 *诇讗* 诇讛讜住讬祝", | |
container=False, | |
rtl=True, | |
max_lines=1 | |
) | |
with gr.Row(): | |
run_button = gr.Button("讛转讞诇讛") | |
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath', show_share_button=False) | |
prompt.submit( | |
fn = infer, | |
inputs = [prompt,prompt2], | |
outputs = [result] | |
) | |
prompt2.submit( | |
fn = infer, | |
inputs = [prompt,prompt2], | |
outputs = [result] | |
) | |
run_button.click( | |
fn = infer, | |
inputs = [prompt,prompt2], | |
outputs = [result] | |
) | |
demo.queue().launch() |