Kokoro-API-5 / app.py
Yaron Koresh
Update app.py
f183947 verified
raw
history blame
4.99 kB
import gradio as gr
import os
import re
#from tempfile import NamedTemporaryFile
import numpy as np
import spaces
import random
import string
from diffusers import AutoPipelineForText2Image
import torch
from pathos.multiprocessing import ProcessingPool as ProcessPoolExecutor
import requests
from lxml.html import fromstring
pool = ProcessPoolExecutor(4)
pool.__enter__()
#model_id = "runwayml/stable-diffusion-v1-5"
#model_id = "kandinsky-community/kandinsky-3"
model_id = "stabilityai/stable-diffusion-3-medium-diffusers"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
else:
pipe = AutoPipelineForText2Image.from_pretrained(model_id, use_safetensors=True, token=os.getenv('hf_token'))
pipe = pipe.to(device)
def translate(text,lang):
text = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', text)).lower().strip()
lang = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', lang)).lower().strip()
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 13_1) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/16.1 Safari/605.1.15'
]
url = 'https://www.google.com/search'
resp = requests.get(
url = url,
params = {'q': f'{lang} translate {text}'},
headers = {
'User-Agent': random.choice(user_agents)
}
)
content = resp.content
html = fromstring(content)
#src = html.xpath('//pre[@data-placeholder="Enter text"]/textarea')[0].text.strip()
translated = text
try:
trgt = html.xpath('//span[@class="target-language"]')[0].text.strip()
rslt = html.xpath('//pre[@aria-label="Translated text"]/span')[0].text.strip()
if trgt.lower() == lang.lower():
translated = rslt
except:
raise Exception("Translation Error!")
ret = re.sub(f'[{string.punctuation}]', '', re.sub('[\s+]', ' ', translated)).lower().strip()
print(ret)
return ret
def generate_random_string(length):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
@spaces.GPU(duration=120)
def Piper(_do):
return pipe(
_do,
height=512,
width=768,
negative_prompt='ugly, deformed, disfigured, poor details, bad anatomy, labels, texts, logos',
num_inference_steps=40,
guidance_scale=10
)
def infer(prompt):
name = generate_random_string(12)+".png"
_do = f'{ translate(prompt,"english") }, hot colors palette, muted colors, dynamic poze, realistic, accurate, matched, realistic details, award winning photograph, soft natural lighting, deep field, high definition, highly detailed, 8k'.lower()
image = Piper(_do).images[0].save(name)
return name
css="""
#col-container {
margin: 0 auto;
max-width: 15cm;
}
#image-container {
aspect-ratio: 3 / 2;
}
.dropdown-arrow {
display: none !important;
}
"""
js="""
function custom(){
document.querySelector("div#prompt input").setAttribute("maxlength","38");
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(theme=gr.themes.Soft(),css=css,js=js) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Image Generator
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Textbox(
elem_id="prompt",
placeholder="Describe the photo",
container=False,
rtl=True,
max_lines=1
)
with gr.Row():
run_button = gr.Button("Run")
result = gr.Image(elem_id="image-container", label="Result", show_label=False, type='filepath')
prompt.submit(
fn = infer,
inputs = [prompt],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch()